GOLDEN BEACH: A BRIGHT SPOT

1978 ◽  
Vol 18 (1) ◽  
pp. 109
Author(s):  
R. B. Mariow

The Golden Beach closed anticlinal structure lies five kilometres offshore in the Gippsland Basin. Golden Beach 1A was drilled in 1967 near the crest of the structure and intersected a gas column of 19 m (63 feet) at the top of the Latrobe Group (Late Eocene) where most of the hydrocarbon accumulations in the Gippsland Basin have been found. The gas-water contact lies at a depth of 652 m (2139 feet) below sea level.On seismic data recorded over the structure, a high amplitude flat-lying event was interpreted as a bright 'flat spot' at the gas-water contact. Reprocessing of the seismic data enhanced the bright spot effect and enabled the areal extent of the gas zone to be mapped. The presence of the gas also leads to a polarity reversal of the top of the Latrobe Group seismic reflector over the gas accumulation.Seismic data from other structures containing hydrocarbons in the Gippsland Basin support the concept that bright spots and flat spots are more likely to be associated with gas than with oil accumulations, and that the observed bright spot effect decreases with increasing depth.

1980 ◽  
Vol 20 (1) ◽  
pp. 130
Author(s):  
R.C.N. Thornton ◽  
B.J. Burns ◽  
A.K. Khurana ◽  
A.J. Rigg

The Fortescue-1 well drilled in the Gippsland Basin in June 1978 was a dry hole. However, results of detailed stratigraphic analysis together with seismic data provided sufficient information to predict the possible occurrence of a stratigraphic trap on the flank of the giant Halibut structure.Three months later the West Halibut-1 well encountered oil in the Latrobe Group 16 m below that depth carried as the original oil-water contact for the Halibut field. Following wireline testing in both the water and oil-bearing sandstone units, two separate pressure systems were recognised in the well. Three additional wells, Fortescue-2, 3 and 4, were drilled to define further the limits of the field, the complex stratigraphy and the hydrocarbon contacts.Integration of detailed well log correlations, stratigraphic interpretations and seismic data indicated that the Fortescue reservoirs were a discrete set of units stratigraphically younger and separated from those of Halibut and Cobia Fields. Analysis of pressures confirmed the presence of two separate pressure systems, proving none of the Fortescue reservoirs were being produced from the Halibut platform. Geochemical analysis of oils from both accumulations supported the above results, with indications that no mixing of oils had occurred.Because the Fortescue Field is interpreted as a hydrocarbon accumulation which is completely separated from both Halibut and Cobia Fields, and was not discovered prior to September 17, 1975, it qualified as "new oil" under the Federal Government's existing crude oil pricing policy. In late 1979, the Federal Government notified Esso/BHP that oil produced from the Fortescue Field would be classified as “new oil”.


2018 ◽  
Vol 55 (12) ◽  
pp. 1297-1311 ◽  
Author(s):  
Wei Yang ◽  
Xiaoxing Gong ◽  
Wenjie Li

Anomalously high-amplitude seismic reflections are commonly observed in deeply buried Ordovician carbonate strata in the Halahatang area of the northern Tarim Basin. These bright spots have been demonstrated to be generally related to effective oil and gas reservoirs. These bright spot reflections have complex geological origins, because they are deeply buried and have been altered by multi-phase tectonic movement and karstification. Currently, there is no effective geological model for these bright spots to guide hydrocarbon exploration and development. Using core, well logs, and seismic data, the geological origins of bright spot are classified into three types, controlled by karstification, faulting, and volcanic hydrothermal activity. Bright spots differing by geological origin exhibit large differences in seismic reflection character, such as reflection amplitude, curvature, degree of distortion, and the number of vertically stacked bright spots in the seismic section. By categorizing the bright spots and the seismic character of the surrounding strata, their geological origins can after be inferred. Reservoirs formed by early karstification were later altered by epigenetic karstification. Two periods of paleodrainage further altered the early dissolution pores. In addition, faults formed by tectonic uplift also enhanced the dissolution of the flowing karst waters. Some reservoirs were subsequently altered by Permian volcanic hydrothermal fluids.


2020 ◽  
Vol 8 (4) ◽  
pp. SR45-SR51
Author(s):  
Peter Reilly ◽  
Roberto Clairmont ◽  
Heather Bedle

In the shallower regions of the 3D Nimitz seismic survey, there exist multiple interesting bright seismic amplitude anomalies. These anomalies, or funny looking things, occur in a confined spatial and temporal region of the seismic. They have a concave-up seismic appearance along the cross section. Bright seismic amplitudes can be a direct hydrocarbon indicator, or they can be representative of strong lithologic contrasts and/or acquisition artifacts. We have set out to investigate misinterpreted seismic anomalies along cross-sectional lines. Therefore, we apply seismic attributes to indicate that these bright spot features, which we interpret to be submarine gullies looking along time-slice intersections, can possibly be mistaken for hydrocarbon anomalies in a cross-sectional view. However, we cannot fully rule out the presence of hydrocarbons because it is common for gas sands to create similar anomalies. Previously drilled wells within the survey (Korimako-1 and Tarapunga-1) point to a lack of hydrocarbon potential in the subsurface. Although it is possible that these bright spots are due to hydrocarbon presence, we develop a more likely hypothesis: The lithology of the interfluve sediments is similar to the gully-margin drapes but differs from the gully sediment fill. Funny looking thing (FLT): Submarine gullies Seismic appearance: High-amplitude spotted features Alternative interpretations: Lithologic anomalies, gas seeps, bright spots Features with a similar appearance: Gas accumulation, sediment fills in limestone paleocaves Formation: Giant Foresets Formation Age: Pleistocene Location: Taranaki Basin, New Zealand Seismic data: Nimitz 3D (cropped volume) Analysis tools: Curvature, instantaneous frequency, and sweetness attributes; well reports


Geophysics ◽  
1991 ◽  
Vol 56 (5) ◽  
pp. 618-627 ◽  
Author(s):  
N. L. Anderson ◽  
R. J. Brown

Two Devonian salts of western Canada, those of the Black Creek member (Upper Elk Point subgroup) in northwest Alberta and those of the Wabamun group in southeastern Alberta, were widely distributed and uniformly deposited within their respective basins. Both of these salts are interbedded within predominantly carbonate sequences and both have been extensively leached. They are now preserved as discontinuous remnants of variable thickness and areal extent. These salt remnants and their associated collapse features are often associated with structural or stratigraphic traps. Structural traps typically form where reservoir facies are closed across remnant salts, stratigraphic traps often develop where reservoir facies were either preferentially deposited and/or preserved in salt collapse lows. As a result of these relationships between dissolution and hydrocarbon entrapment, the distribution (areal extent and thickness) of these salt remnants is of significant interest to the explorationist. Both the Black Creek and Wabamun salts have relatively abrupt contacts with the encasing higher velocity, higher density carbonates. Where these salts are sufficiently thick, their top and base typically generate high amplitude reflections, and lateral variations in the salt isopach can be directly determined from the seismic data. Relative salt thicknesses can also be indirectly estimated through analyses of lateral variations in the thicknesses of the encompassing carbonates, time structural drape and velocity pullup. Such seismic information about the thickness and the extent of these salts should be used together with well log control to generate subsurface distribution maps. These maps will facilitate both the delineation of prospective structural and stratigraphic play fairways and the determination of the timing of salt dissolution. In addition, an appreciation of regional salt distribution will decrease the likelihood that remnant salts will be misinterpreted as either reefs and/or faulted structures.


2016 ◽  
Vol 64 (2) ◽  
pp. 135-140
Author(s):  
Morshedur Rahman ◽  
SM Mainul Kabir ◽  
Janifar Hakim Lupin

Shahbazpur structure is located in the southern Part of the central deep basin in the Hatia trough, where lie all the largest Gas fields of Bangladesh. A method is established to delineate the structural mapping precisely by interpreting four 2D seismic lines that are acquired over Shahbazpur structure. Moreover direct hydrocarbon indicators (DHI) related attributes are analyzed for further confirmation for presence of hydrocarbon. To do this synthetic seismogram generation, seismic to well tie, velocity modelling and depth conversion are performed. A limited number of seismic attributes functions that are available in an academic version of Petrel software are applied to analyze attributes. Seismic attribute analyses that are used in this interpretation mainly are associated to bright spot detection. Presence of bright spots or high amplitude anomaly over the present Shahbazpur structure, reservoir zone are observed. This signature will play a very important role in next well planning on the same structure to test the shallow accumulation of hydrocarbon. For better understanding of this shallow reserve, it is suggested to acquire 3D seismic data over Shahbazpur structure which will help to evaluate the hydrocarbon accumulation and to identify gas migration pathways. Dhaka Univ. J. Sci. 64(2): 135-140, 2016 (July)


Author(s):  
Nina Skaarup ◽  
James A. Chalmers

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Skaarup, N., & Chalmers, J. A. (1998). A possible new hydrocarbon play, offshore central West Greenland. Geology of Greenland Survey Bulletin, 180, 28-30. https://doi.org/10.34194/ggub.v180.5082 _______________ The discovery of extensive seeps of crude oil onshore central West Greenland (Christiansen et al. 1992, 1994, 1995, 1996, 1997, 1998, this volume; Christiansen 1993) means that the central West Greenland area is now prospective for hydrocarbons in its own right. Analysis of the oils (Bojesen-Koefoed et al. in press) shows that their source rocks are probably nearby and, because the oils are found within the Lower Tertiary basalts, the source rocks must be below the basalts. It is therefore possible that in the offshore area oil could have migrated through the basalts and be trapped in overlying sediments. In the offshore area to the west of Disko and Nuussuaq (Fig. 1), Whittaker (1995, 1996) interpreted a few multichannel seismic lines acquired in 1990, together with some seismic data acquired by industry in the 1970s. He described a number of large rotated fault-blocks containing structural closures at top basalt level that could indicate leads capable of trapping hydrocarbons. In order to investigate Whittaker’s (1995, 1996) interpretation, in 1995 the Geological Survey of Greenland acquired 1960 km new multichannel seismic data (Fig. 1) using funds provided by the Government of Greenland, Minerals Office (now Bureau of Minerals and Petroleum) and the Danish State through the Mineral Resources Administration for Greenland. The data were acquired using the Danish Naval vessel Thetis which had been adapted to accommodate seismic equipment. The data acquired in 1995 have been integrated with the older data and an interpretation has been carried out of the structure of the top basalt reflection. This work shows a fault pattern in general agreement with that of Whittaker (1995, 1996), although there are differences in detail. In particular the largest structural closure reported by Whittaker (1995) has not been confirmed. Furthermore, one of Whittaker’s (1995) smaller leads seems to be larger than he had interpreted and may be associated with a DHI (direct hydrocarbon indicator) in the form of a ‘bright spot’.


2013 ◽  
Vol 31 (4) ◽  
pp. 619 ◽  
Author(s):  
Luiz Eduardo Soares Ferreira ◽  
Milton José Porsani ◽  
Michelângelo G. Da Silva ◽  
Giovani Lopes Vasconcelos

ABSTRACT. Seismic processing aims to provide an adequate image of the subsurface geology. During seismic processing, the filtering of signals considered noise is of utmost importance. Among these signals is the surface rolling noise, better known as ground-roll. Ground-roll occurs mainly in land seismic data, masking reflections, and this roll has the following main features: high amplitude, low frequency and low speed. The attenuation of this noise is generally performed through so-called conventional methods using 1-D or 2-D frequency filters in the fk domain. This study uses the empirical mode decomposition (EMD) method for ground-roll attenuation. The EMD method was implemented in the programming language FORTRAN 90 and applied in the time and frequency domains. The application of this method to the processing of land seismic line 204-RL-247 in Tacutu Basin resulted in stacked seismic sections that were of similar or sometimes better quality compared with those obtained using the fk and high-pass filtering methods.Keywords: seismic processing, empirical mode decomposition, seismic data filtering, ground-roll. RESUMO. O processamento sísmico tem como principal objetivo fornecer uma imagem adequada da geologia da subsuperfície. Nas etapas do processamento sísmico a filtragem de sinais considerados como ruídos é de fundamental importância. Dentre esses ruídos encontramos o ruído de rolamento superficial, mais conhecido como ground-roll . O ground-roll ocorre principalmente em dados sísmicos terrestres, mascarando as reflexões e possui como principais características: alta amplitude, baixa frequência e baixa velocidade. A atenuação desse ruído é geralmente realizada através de métodos de filtragem ditos convencionais, que utilizam filtros de frequência 1D ou filtro 2D no domínio fk. Este trabalho utiliza o método de Decomposição em Modos Empíricos (DME) para a atenuação do ground-roll. O método DME foi implementado em linguagem de programação FORTRAN 90, e foi aplicado no domínio do tempo e da frequência. Sua aplicação no processamento da linha sísmica terrestre 204-RL-247 da Bacia do Tacutu gerou como resultados, seções sísmicas empilhadas de qualidade semelhante e por vezes melhor, quando comparadas as obtidas com os métodos de filtragem fk e passa-alta.Palavras-chave: processamento sísmico, decomposição em modos empíricos, filtragem dados sísmicos, atenuação do ground-roll.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. V79-V86 ◽  
Author(s):  
Hakan Karsli ◽  
Derman Dondurur ◽  
Günay Çifçi

Time-dependent amplitude and phase information of stacked seismic data are processed independently using complex trace analysis in order to facilitate interpretation by improving resolution and decreasing random noise. We represent seismic traces using their envelopes and instantaneous phases obtained by the Hilbert transform. The proposed method reduces the amplitudes of the low-frequency components of the envelope, while preserving the phase information. Several tests are performed in order to investigate the behavior of the present method for resolution improvement and noise suppression. Applications on both 1D and 2D synthetic data show that the method is capable of reducing the amplitudes and temporal widths of the side lobes of the input wavelets, and hence, the spectral bandwidth of the input seismic data is enhanced, resulting in an improvement in the signal-to-noise ratio. The bright-spot anomalies observed on the stacked sections become clearer because the output seismic traces have a simplified appearance allowing an easier data interpretation. We recommend applying this simple signal processing for signal enhancement prior to interpretation, especially for single channel and low-fold seismic data.


2018 ◽  
Vol 10 (1) ◽  
pp. 174-191 ◽  
Author(s):  
Majid Khan ◽  
Yike Liu ◽  
Asam Farid ◽  
Muhammad Owais

Abstract Regional seismic reflection profiles and deep exploratory wells have been used to characterize the subsurface structural trends and seismo-stratigraphic architecture of the sedimentary successions in offshore Indus Pakistan. To improve the data quality, we have reprocessed the seismic data by applying signal processing scheme to enhance the reflection continuity for obtaining better results. Synthetic seismograms have been used to identify and tie the seismic reflections to the well data. The seismic data revealed tectonically controlled, distinct episodes of normal faulting representing rifting during Mesozoic and transpression at Late Eocene time. A SW-NE oriented anticlinal type push up structure is observed resulted from the basement reactivation and recent transpression along Indian Plate margin. The structural growth of this particular pushup geometry was computed. Six mappable seismic sequences have been identified on seismic records. In general, geological formations are at shallow depths towards northwest due to basement blocks uplift. A paleoshelf is also identified on seismic records overlain by Cretaceous sediments, which is indicative of Indian-African Plates rifting at Jurassic time. The seismic interpretation reveals that the structural styles and stratigraphy of the region were significantly affected by the northward drift of the Indian Plate, post-rifting, and sedimentation along its western margin during Middle Cenozoic. A considerable structural growth along the push up geometry indicates present day transpression in the margin sediments. The present comprehensive interpretation can help in understanding the complex structures in passive continental margins worldwide that display similar characteristics but are considered to be dominated by rifting and drifting tectonics.


1975 ◽  
Vol 15 (1) ◽  
pp. 81
Author(s):  
W. Pailthorpe ◽  
J. Wardell

During the past two years, much publicity has been given to the direct indication of hydrocarbon accumulations by "Bright Spot" reflections: the very high amplitude reflections from a shale to gas-sand or gas-sand to water-sand interface. It was soon generally realised, however, that this phenomenon was of limited occurrence, being mostly restricted to young, shallow, sand and shale sequences such as the United States Gulf Coast. A more widely detectable indication of hydrocarbons was found to be the reflection from a fluid interface, such as the gas to water interface, within the reservoir. This reflection is characterised by its flatness, being a fluid interface, and is often called the "Flat Spot".Model studies show that the flat spots have a wide range of amplitudes, from very high for shallow gas to water contacts, to very low for deep oil to water contacts. However, many of the weaker flat spots on good recent marine seismic data have an adequate signal to random noise ratio for detection, and the problem is to separate and distinguish them from the other stronger reflections close by. In this respect the unique flatness of the fluid contact reflection can be exploited by dip discriminant processes, such as velocity filtering, to separate it from the generally dipping reflectors at its boundaries. A limiting factor in the detection of the deeper flat spots is the frequency bandwidth of the seismic data. Since the separation between the flat spot reflection and the upper and lower boundary reflections of the reservoir is often small, relatively high frequency data are needed to resolve these separate reflections. Correct display of the seismic data can be critical to flat spot detection, and some degree of vertical exaggeration of the seismic section is often required to increase apparent dips, and thus make the flat spots more noticeable.The flat spot is generally a smaller target than the structural features that conventional seismic surveys are designed to find and map, and so a denser than normal grid of seismic lines is required adequately to map most flat spots.


Sign in / Sign up

Export Citation Format

Share Document