scholarly journals Fetal programming in 2-year-old calving heifers: peri-conception and first trimester protein restriction alters fetal growth in a gender-specific manner

2014 ◽  
Vol 54 (9) ◽  
pp. 1333 ◽  
Author(s):  
K. J. Copping ◽  
A. Hoare ◽  
M. Callaghan ◽  
I. C. McMillen ◽  
R. J. Rodgers ◽  
...  

Protein restriction in early bovine gestation affects post-natal reproduction and production traits in progeny. This experiment evaluated the effects of dietary protein restriction during the peri-conception period and first trimester in yearling heifers on conceptus growth and development; this period of dietary intervention being earlier than any previous bovine fetal programming studies. Three-hundred and sixty primiparous 12-month-old Santa Gertrudis heifers were individually fed high [14% crude protein (CP)] or low (7% CP) diets for 60 days before conception. At 23 days post-conception (dpc), each high (HPERI) or low (LPERI) group was again split into high (HPOST) or low (LPOST) protein groups yielding four treatment groups in a 2 × 2 factorial design. From the end of the first trimester of gestation (98dpc), the pregnant heifers were individually fed a 12% CP diet until parturition. Forty-six fetuses were excised at 98dpc. Sixty-four heifers went on to calve. Conceptus development was assessed via transrectal ultrasound from 36dpc, fetal necropsy at 98dpc and live calf measures at term. At 36dpc, HPERI diet increased fetal crown–rump length (CRL) (P < 0.05) and at the 60dpc scan, biparietal diameter (BPD) tended to be increased by HPOST diet (P < 0.1) though the greater effect upon BPD was still the HPERI diet (P < 0.05). At 60dpc, BPD in the male fetus was affected by the peri-conception diet (P < 0.05), while in females, BPD was not different among nutritional groups. These ultrasound measures of fetal growth were validated by measures of the excised fetus at 98dpc. Fetal weight was heavier (P < 0.01) in those whose mothers were fed the HPOST diet than their LPOST counterparts. Males fetuses were heavier than female fetuses (P < 0.001). Fetal CRL was increased by HPERI diet (P < 0.05) and tended to be increased by HPOST diet (P < 0.1). Fetal BPD tended to be increased by HPERI diet (P < 0.1). In males, BPD tended to be increased in those fetuses whose mothers were fed HPERI (P < 0.1). For females, maternal nutrition during PERI or POST did not affect BPD at 98dpc (P > 0.1). At term, no dietary effect on birthweight was observed (P > 0.1) and males were not heavier than females (P > 0.1). These results suggest that maternal protein intake during the peri-conception (–60 to 23dpc) and first trimester (24–98dpc) may influence early conceptus growth and development in the bovine. The long-term effects on offspring metabolism and post-natal development of this dietary intervention are yet to be determined.

2018 ◽  
Vol 26 (7) ◽  
pp. 918-927 ◽  
Author(s):  
Chiara Di Gravio ◽  
Ashwin Lawande ◽  
Ramesh D. Potdar ◽  
Sirazul A. Sahariah ◽  
Meera Gandhi ◽  
...  

Background: Young maternal age is associated with poorer birth outcomes, but the mechanisms are incompletely understood. Using data from a prospective cohort of pregnant women living in Mumbai slums, India, we tested whether lower maternal age was associated with adverse fetal growth. Methods: Fetal crown-rump length (CRL) was recorded at a median (interquartile range, IQR) of 10 weeks’ gestation (9-10 weeks). Head circumference (HC), biparietal diameter (BPD), femur length (FL), and abdominal circumference (AC) were recorded at 19 (19-20) and 29 (28-30) weeks. Newborns were measured at a median (IQR) of 2 days (1-3 days) from delivery. Gestation was assessed using prospectively collected menstrual period dates. Results: The sample comprised 1653 singleton fetuses without major congenital abnormalities, of whom 1360 had newborn measurements. Fetuses of younger mothers had smaller CRL (0.01 standard deviation [SD] per year of maternal age; 95% confidence interval CI: 0.00-0.02 1 ; P = .04), and smaller HC, FL, and AC at subsequent visits. Fetal growth of HC (0.04 cm; 95% CI: 0.02-0.05; P < .001), BPD (0.01 cm; 95% CI: 0.00-0.01; P = .009), FL (0.04 cm; 95% CI: 0.02-0.06; P < .001), and AC (0.01 cm; 95% CI: 0.00-0.01; P = .003) up to the third trimester increased with maternal age. Skinfolds, head, and mid-upper arm circumferences were smaller in newborns of younger mothers. Adjusting for maternal prepregnancy socioeconomic status, body mass index, height, and parity attenuated the associations between maternal age and newborn size but did not change those with fetal biometry. Conclusion: Fetuses of younger mothers were smaller from the first trimester onward and grew slower, independently of known confounding factors.


2015 ◽  
Vol 43 (6) ◽  
Author(s):  
Tanya Maric ◽  
Natasha Singh ◽  
Keith Duncan ◽  
Guy J. Thorpe-Beeston ◽  
Makrina D. Savvidou

AbstractTo investigate the relation between first-trimester fetal growth discrepancy, as assessed by crown-rump length (CRL) at 11+0 to 13+6 weeks of gestation, and subsequent development of preeclampsia (PE) in dichorionic diamniotic (DCDA) twin pregnancies. The association between inter-twin CRL and birth weight (BW) discrepancy was also investigated.This was a retrospective, case-control study of DCDA twin pregnancies. Inter-twin CRL discrepancy was calculated as 100×(larger CRL–smaller CRL)/larger CRL. BW discordance was calculated as 100×(larger BW–smaller BW)/larger BW.The study included 299 DCDA pregnancies that remained normotensive and 35 that subsequently developed PE. There was no significant difference in the inter-twin CRL discrepancy between pregnancies complicated by PE and those that were not [3.2%, interquartile range (IQR): 0.5–4.5% vs. 3.3%, IQR: 1.4–5.5%; P=0.17]. There was a positive correlation between inter-twin CRL and BW discrepancy but only in pregnancies that remained normotensive (P<0.001). In women that subsequently developed PE, there was no association between inter-twin CRL and BW discordance (P=0.54).In unselected DCDA twins, first-trimester CRL discrepancy is not different between pregnancies that subsequently develop PE and those that remain normotensive. Furthermore, in pregnancies that are complicated by PE, the association between inter-twin CRL and BW discrepancy appears to be lost.


Author(s):  
Qianqian Zhang ◽  
Chen Zhang ◽  
Yi Wang ◽  
Jiuru Zhao ◽  
Haiyuan Li ◽  
...  

Abstract Purpose To evaluate the effects of the association between first trimester vitamin D (VitD) concentrations and increased prepregnancy body mass index (BMI) on early fetal growth restriction (FGR). Methods This retrospective cohort study included 15,651 women with singleton pregnancy who delivered at the International Peace Maternity and Child Health Hospital between January 2015 and November 2016. Women were classified in two groups based on their serum 25(OH)D vitamin levels status: VitD sufficient (SUFF) group and VitD insufficient or deficient (INSUFF/DEF). The cut-off point for vit D concentration was 50.00 nmol/L. Comparisons were made between women with normal prepregnancy body weight (BMI 18.5–23.9 kg/m2) and overweight and obese (OWO) women (BMI > 24.0 kg/m2). Early FGR was defined as first-trimester gestational age-adjusted crown-rump length (CRL) in the lowest 20th centile of the population. Multivariate logistic regression was used to evaluate the association between maternal serum 25(OH)D levels and prepregnancy BMI with first trimester CRL and early FGR. Results In VitD INSUFF/DEF group, the first trimester CRL was decreased (P = 0.005), and the risk of early FGR was increased by 13% (95% CI 1.04–1.24, P = 0.004) compared to the VitD SUFF group. In OWO group, the first trimester CRL was also significantly decreased (P < 0.0001), and the risk of early FGR was significantly increased by 58% (95% CI 1.40–1.78, P < 0.001) compared with normal weight group. Furthermore, there was a significant combined effect of maternal VitD concentrations and OWO on CRL (P for interaction = 0.02) and the risk of early FGR (P for interaction = 0.07). Conclusion Sufficient first trimester serum 25(OH)D concentration was a protective factor for early fetal growth, especially among OWO mothers. Chinese Clinical Trial Registry (Registration number: ChiCTR1900027447 with date of registration on November 13, 2019-retrospectively registered).


2017 ◽  
Vol 216 (3) ◽  
pp. 302.e1-302.e8 ◽  
Author(s):  
Jamie O. Lo ◽  
Matthias C. Schabel ◽  
Victoria H.J. Roberts ◽  
Xiaojie Wang ◽  
Katherine S. Lewandowski ◽  
...  

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 121-121
Author(s):  
Allison M Meyer

Abstract Mineral nutrition during pregnancy has long been known to impact fetal growth and development. This is evidenced by a multitude of mineral deficiency-related causes for embryonic loss, abortion, stillbirth, or neonatal death, including poor or inappropriate fetal development that can be either reversible or irreversible postnatally. Both macro and trace mineral needs of the dam are known to increase with the fetal growth of advancing gestation due to greater metabolic stress and demand, as well as tissue development and deposition in the fetus. Fetal deposition of many trace minerals is especially important for neonatal use while consuming milk with low mineral concentrations and facing a multitude of immune challenges. In the last 2 decades, many laboratories have focused on “developmental programming,” or the effects of maternal nutrition on fetal and neonatal development and ultimately long-term health and productivity of livestock. Despite this, the role of macro and trace minerals in short-and long-term consequences of developmental programming is still unclear for many minerals and species. Taken together, research in ruminants and swine demonstrate that mineral intake and source during pregnancy can have a large effect on fetal growth and development that lasts into the neonatal and pre-weaning periods. Some studies suggest that supra-nutritional mineral intake may have a positive benefit during gestation or neonatal periods. Moreover, some data suggest that mineral requirements may be greater than currently thought to accommodate the rapid fetal growth and preparation for lactation that occurs during late gestation. Continued research is necessary to determine mineral requirements of livestock during pregnancy, especially when considering their long-reaching subsequent effects on offspring. Additionally, increased understanding of perinatal transfer of trace minerals can aid in our management of pregnant dams and their offspring.


2016 ◽  
Vol 49 (3) ◽  
pp. 392-407 ◽  
Author(s):  
Eva Pölzlberger ◽  
Beda Hartmann ◽  
Erich Hafner ◽  
Ingrid Stümpflein ◽  
Sylvia Kirchengast

SummaryThe impact of maternal height, pre-pregnancy weight status and gestational weight gain on fetal growth patterns and newborn size was analysed using a dataset of 4261 singleton term births taking place at the Viennese Danube Hospital between 2005 and 2013. Fetal growth patterns were reconstructed from three ultrasound examinations carried out at the 11th/12th, 20th/21th and 32th/33th weeks of gestation. Crown–rump length, biparietal diameter, fronto-occipital diameter, head circumference, abdominal transverse diameter, abdominal anterior–posterior diameter, abdominal circumference and femur length were determined. Birth weight, birth length and head circumference were measured immediately after birth. The vast majority of newborns were of normal weight, i.e. between 2500 and 4000 g. Maternal height showed a just-significant but weak positive association (r=0.03: p=0.039) with crown–rump length at the first trimester and with the majority of fetal parameters at the second trimester (r>0.06; p<0.001) and third trimester (r>0.09; p<0.001). Pre-pregnancy weight status was significantly positively associated with nearly all fetal dimensions at the third trimester (r>0.08; p<0.001). Maternal height (r>0.17; p<0.001) and pre-pregnancy weight status (r>0.13; p<0.001), but also gestational weight gain (r>0.13; p<0.001), were significantly positively associated with newborn size. Some of these associations were quite weak and the statistical significance was mainly due to the large sample size. The association patterns between maternal height and pre-pregnancy weight status with fetal growth patterns (p<0.001), as well as newborn size (p<0.001), were independent of maternal age, nicotine consumption and fetal sex. In general, taller and heavier women gave birth to larger infants. This association between maternal size and fetal growth patterns was detectable from the first trimester onwards.


1987 ◽  
Vol 62 (3) ◽  
pp. 978-982 ◽  
Author(s):  
B. Wardley-Smith ◽  
C. Dore ◽  
S. Monk ◽  
S. Cohen ◽  
S. Eusden ◽  
...  

Pregnant T-O mice were exposed to 50 ATA He-O2 pressure for 4 days at different stages of gestation: 4–7, 6–9, and 9–12 days gestation. Controls were exposed to 1 atmosphere absolute (ATA) air. After the exposure period, pregnancy continued until 18 days gestation when the mice were killed and autopsied. Data were collected relating to the litters and placentas (Litter size, percent resorptions, placental weight, fetal-to-placental ratio) and fetuses (weight, crown-rump length, sex, skeletal abnormalities) and analyzed using analysis of variance. Results showed a small but significant increase in the percent resorptions in the pressure group and also a decrease in crown-rump length and placental weight. None of these changes were related to the stage of gestation in which the mice were exposed. No teratogenic effects of pressure were seen. We conclude that exposure to 50 ATA He-O2 during pregnancy in mice produces a small nonselective effect on fetal growth and development but does not affect any specific event taking place during these stages of embryogenesis.


2001 ◽  
Vol 4 (2b) ◽  
pp. 625-630 ◽  
Author(s):  
AA Jackson ◽  
SM Robinson

AbstractIn a successful pregnancy maternal health is maintained, a healthy baby is delivered and the mother is able to nurture her newborn adequately. Despite continued interest in the role and importance of maternal diet in this process, we do not have a clear understanding of how the nutritional status of the mother influences fetal growth and development. Recent epidemiological evidence of an association between poor fetal growth and adult disease highlights the need to reconsider the influences which act on the fetus, and the role maternal nutrition may play.Nutrient needs are increased in pregnancy. For the mother to be solely dependent upon her dietary intake to meet these demands, would represent a very high risk strategy. Hence adequate reserves are important for a successful outcome. Whilst there are numerous observational studies of diet during pregnancy, there are only limited data from well-controlled, randomised supplementation studies. A recent systematic review showed only dietary supplements balanced in energy and protein content to result consistently in improved fetal growth. There is no strong evidence that nutrient supplements confer benefit in women without overt deficiency.To interpret future dietary studies in pregnancy we need to consider metabolic differences between women which may influence their ability to meet fetal nutrient demand, to allow for nutrient–nutrient interactions, and to take account of differences in timing in gestation. Consideration of these factors in studies of pregnancy, will lead to a clearer understanding of the links between maternal diet and fetal growth and development. Until we have this understanding, it is reasonable to expect that women entering pregnancy are provided with a diet which is adequate, based upon our normal understanding of requirements, and it is not acceptable for women to be expected to carry a pregnancy with an obvious or overt nutritional deficiency.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sander Galjaard ◽  
Lieveke Ameye ◽  
Christoph C. Lees ◽  
Anne Pexsters ◽  
Tom Bourne ◽  
...  

Abstract Background According to the WHO Multicentre Growth Reference Study Group recommendations, boys and girls have different growth trajectories after birth. Our aim was to develop gender-specific fetal growth curves in a low-risk population and to compare immediate birth outcomes. Methods First, second, and third trimester fetal ultrasound examinations were conducted between 2002 and 2012. The data was selected using the following criteria: routine examinations in uncomplicated singleton pregnancies, Caucasian ethnicity, and confirmation of gestational age by a crown-rump length (CRL) measurement in the first trimester. Generalized Additive Model for Location, Scale and Shape (GAMLSS) was used to align the time frames of the longitudinal fetal measurements, corresponding with the methods of the postnatal growth curves of the WHO MGRS Group. Results A total of 27,680 complete scans were selected from the astraia© ultrasound database representing 12,368 pregnancies. Gender-specific fetal growth curves for biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL) were derived. The HC and BPD were significantly larger in boys compared to girls from 20 weeks of gestation onwards (p < 0.001) equating to a 3-day difference at 20–24 weeks. Boys were significantly heavier, longer, and had greater head circumference than girls (p < 0.001) at birth. The Apgar score at 1 min (p = 0.01) and arterial cord pH (p < 0.001) were lower in boys. Conclusions These longitudinal fetal growth curves for the first time allow integration with neonatal and pediatric WHO gender-specific growth curves. Boys exceed head growth halfway of the pregnancy, and immediate birth outcomes are worse in boys than girls. Gender difference in intrauterine growth is sufficiently distinct to have a clinically important effect on fetal weight estimation but also on the second trimester dating. Therefore, these differences might already play a role in early fetal or immediate neonatal management.


Sign in / Sign up

Export Citation Format

Share Document