Influence of supplementation of tropical plant feed additives on in vitro rumen fermentation and methanogenesis

2014 ◽  
Vol 54 (10) ◽  
pp. 1770 ◽  
Author(s):  
P. N. Chatterjee ◽  
D. N. Kamra ◽  
N. Agarwal ◽  
A. K. Patra

Tropical plants rich in secondary metabolites have the potential to modulate rumen fermentation for more efficient food production with reduced environmental impact. In the present study after extensive screening, three tropical tree leaves (Bahunia variegata, Psidium guajava and Cannabis indica) and three herbs (Cinnamomum zeylanicum, Trachyspermum ammi and Cinnamomum tamala) were selected to evaluate their effect on buffalo rumen fermentation. Total gas production, substrate degradability, volatile fatty acid pattern and enzyme activities were not affected by any of the plants tested in this study. However, methane production was lowered (P ≤ 0.05) due to inclusion of P. guajava leaves. Anti-methanogenic/anti-protozoal metabolites present in tropical plants seem to be better extracted by ethanol solvent and accordingly the best performing plant i.e. different levels of P. guajava extract was used for further evaluation. Both the methane inhibition and defaunating action of ethanol extract of P. guajava were found to be dose dependent. In conclusion, leaves of P. guajava appear to be a promising plant feed additive for decreasing methane production without affecting feed degradability in the rumen.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 471-472
Author(s):  
Ana Paula Tarozo ◽  
Annelise Aila G Gomes Lobo ◽  
Yuli Andrea A Peña Bermudez ◽  
Danny Alexander Rojas Moreno ◽  
Rafaela Zuliani Spalato ◽  
...  

Abstract Currently, the use of feed additives appears as an alternative in reducing the environmental impact of animal agriculture, reducing the emission of greenhouse gases and increasing the acceptability of exports in international trade. Thus, the objective of the present study was to evaluate the in vitro rumen fermentation parameters by adding 4.5% ammonium nitrate and 30 ppm of the additive sodium monensin to beef cattle diets, searching for the best alternative to mitigate methane production. The experiment was performed in an in vitro gas production system, and the fermentation kinetics, methanogenesis and short-chain fatty acid (SCFA) production were studied. Regarding methanogenesis, it was observed that the diet with ammonium nitrate showed higher in vitro degradability in DM (P = 0.017) and lower methane production (in ml/g of DM; P = 0.0088), compared to the diet with sodium monensin. Considering the fermentation kinetics, it can be stated that acetate production in molar (%) was lower in control and monensin diets, and higher in nitrate and nitrate + monensin diets (P < 0.0001). It is concluded that both treatments ammonium nitrate + sodium monensin and ammonium nitrate alone have mitigating effect on methane emission, when compared to the control treatment. However, ammonium nitrate is more effective in this regard, producing less methane in vitro and having no negative effect on rumen fermentation parameters.


2015 ◽  
Vol 6 (3) ◽  
pp. 353-360 ◽  
Author(s):  
S.S. Dagar ◽  
N. Singh ◽  
N. Goel ◽  
S. Kumar ◽  
A.K. Puniya

In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.


2021 ◽  
Author(s):  
Dinh Van Dung ◽  
Le Duc Thao ◽  
Le Duc Ngoan ◽  
Le Dinh Phung ◽  
Hynek Roubík

Abstract This study aimed to evaluate the effects of biochar produced from tropical biomass resources (rice straw, corncob and bamboo) at different processing temperatures (300, 500 and 700oC) on in vitro rumen fermentation and methane production. Treatments were arranged as a 3x3 factorial with three biomass resources and three biochar processing temperatures. Added biochar occupied 3% of the substrate (DM basic). 250 mg of the air-dried substrate was incubated in 120 ml bottles, which contained 25 ml of mixed rumen fluid and buffer mineral solution. Total gas and methane production, in vitro digestibility of DM, OM, and in vitro rumen fermentation characteristics were determined at three-time points: 4, 24 and 48 hours of the incubation. Results showed that biomass resources and processing temperatures affected gas production at 4, 24 and 48 hours of the incubation (P < 0.02). Interactions between biomass resources and processing temperatures affected gas production at 4 hours (P = 0.06) and 24 hours (P = 0.001). Biomass resources and processing temperatures affected methane production at different time points of the incubation, except the effect of biomass resources at 24 hours (P = 0.406). Increased processing temperature from 300 to 700oC reduced gas and methane production (P < 0.05). Biomass resources affected OM digestibility after 4 and 24 hours of incubation. Processing temperatures and their interaction with biomass resources affected OM digestibility after 48 hours of incubation (P < 0.001). NH3-N concentrations at 24 and 48h were highest for corncob, then rice straw, and lowest for bamboo tree derived biochar (P < 0.05). Increased processing temperatures resulted in higher NH3-N concentrations at 24 and 48 hours of incubation (P < 0.05). To mitigate methane production, biomass resources and processing temperatures should be considered when utilising biochar as feed additive in ruminant diets.


2021 ◽  
Vol 33 ◽  
pp. 04009
Author(s):  
Asih Kurniawati ◽  
Muhlisin Muhsin Al Anas

The study was designed to determine the effect of a candidate natural feed additive on the kinetics of gas production as a representation of feed degradability and methane produced during rumen fermentation. Three blends of essential oil (BEO) as candidates for feed additives were formulated using pine and eucalyptus essential oils in the following ratios: 75:25, 50:50, and 25:75 for BEO1, BEO2, and BEO3, respectively. Every BEO was added to the batch fermentation system at dosages of 0, 100, and 200 l/l in the medium. Furthermore, an in vitro gas production technique was used to simulate rumen feed fermentation. According to the gas production kinetics, all BEO additives did not affect the total potential gas produced, as well as the potential gas produced from the soluble and insoluble substrate. The rates of gas production were similar among treatments. Furthermore, the addition of BEO did not affect the total volume of gas produced during fermentation. Meanwhile, BEO1 at 200 l/l dose and BEO 3 at 100 l/l dose significantly reduced methane production (P0.05). In conclusion, the BEO1 and BEO 3 at dosages of 200 and 100 l/l, respectively, had the potential as a feed additive to reduce methane production without a negative effect on nutrient digestibility.


2021 ◽  
Vol 902 (1) ◽  
pp. 012023
Author(s):  
M Abdelbagi ◽  
R Ridwan ◽  
Nahrowi ◽  
A Jayanegara

Abstract The aim of this study was to evaluate the potential of nitrate supplementation as an in vitro feed additive for modulating the rumen fermentation pattern and mitigating the enteric methane emission by using a meta-analysis method. A database was built from the previously published articles regarding the effectiveness of nitrate as a feed additive in the in vitro rumen fermentation system. Different doses or forms of nitrate supplementations were identified in the database. A total of thirteen studies containing 47 data sets were obtained from ten published research papers. The obtained data were subjected to the mixed model methodology. The doses or the different forms of nitrate were treated as a fixed factor, while the different studies were considered as a random effect. Results showed that nitrate addition decreased significantly (P<0.05) the total gas production, methane production, the TVFAs, and the acetic acid, and increased significantly (P<0.05) ammonia concentration in a linear pattern. However, nitrate did not affect significantly the rumen pH and the population of methanogenic archaea. In conclusion, nitrate is an effective additive for modulating the rumen fermentation by altering the fermentation process resulting in a lower methane production.


2020 ◽  
Vol 46 (2) ◽  
pp. 258-268
Author(s):  
M. A. Bamikole ◽  
O. J. Babayemi ◽  
A. A. Lamidi ◽  
B. A. Ayinde ◽  
U. J. Ikhatua ◽  
...  

Methane gas produced by ruminants during feed fermentation contributed to global warming as well as poor efficiency of food utilization. Mitigating ruminal methane production through anti-microbial feed additive has serious health implications. A preliminary study of the potential of medicinal plants and spices from Edo and Rivers State, as possible replacement to antibiotic feed additives was carried out. Medicinal plants and spices were purposefully sampled, dried at 40oC, milled and 10 mg was added with 190 mg of substrate in a preweighed nylon incubation bags. Bags and their contents were incubated using 30 mL of buffered rumen liquor in 100 mL syringes following the standard procedure of in vitro fermentation. Variables monitored were 24h total gas volume, short chain fatty acids (SCFA) methane (CH4 ) gas, dry matter degradability (DMD) as well as some chemical, cell wall and anti-nutritive components. Results revealed that adding the medicinal plants and spices as feed additives did not depress gas production in most cases (19.5 – 29.50 mL, 17.75 – 30.00 mL and 12.00 – 29.00 mL for Edo medicinal plants, Edo spices and Rivers medicinal plants respectively) and also did not depress DMD (> 50%). Azadirachta indica stem reduced CH4 production mostly by 53.56% while Dennttia tripetala did by 47.69% among the Edo medicinal plants and spices, respectively. In Rivers State, Amaranthus spinosus gave the highest value of 60.33% CH4 reduction. In the same bracket of similar and good CH4 reduction potentials were Alstonia boonei leaves (49.06%), Newbouldia laevis root (41.50%), Euphorbia heterophyla (37.97%), Allium crispum (47.31%), Allium cepa (46.80%), Aframomum mueguata (46.54%), Capsicum annum (47.32%), Ageratum conyzoides (56.52%), Lagenaria breviflora (48.03%) and Centrosema molle (45.08%). All the medicinal plant and spices with potential for CH4 reduction had corresponding high SCFA values (0.46 – 0.65 Mmol) with tannin (%) and saponin (%) contents of 0.011 – 17.50 and 0.01 – 2.40 respectively. Conclusively, the medicinal plants and spices demonstrated good potentials for reducing rumen methane production in vitro and may be subjected to further in vivo studies.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 166
Author(s):  
Pichad Khejornsart ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Alternative feed sources can be utilized to reduce enteric methane (CH4) emissions, a major greenhouse gas that contributes to global warming. This study aimed to evaluate the potential use of tropical plants to improve digestibility, reduce protozoal populations, improve rumen fermentation, and minimize methane emissions from ruminants. The plants considered herein grow in tropical climates, are easily accessible in large quantities, and are directly related to human food production. Nine plants that grow naturally in tropical climates were assessed. Plant supplementation substantially enhanced accumulative gas production at 24 h (p < 0.05). The apparent organic matter digestibility (AOMDvt) of the diet was not affected by five of the nine plants. With the addition of the plant material, ammonia nitrogen concentrations were reduced by up to 47% and methane concentrations were reduced by 54%. Five of the nine plant materials reduced methane production in terms of CH4/dry matter and CH4/digestibility of the organic matter by 15–35% and 8–24%, respectively. In conclusion, supplementation with plants with high tannin contents was shown to be a viable strategy for improving rumen fermentation, reducing protozoal populations, and limiting methane emissions. In this regard, the leaves of Piper sarmentosum, Acmella oleracea, Careya arborea, and Anacardium occidentale were especially promising.


2014 ◽  
Vol 54 (3) ◽  
pp. 299 ◽  
Author(s):  
M. Taghavi-Nezhad ◽  
D. Alipour ◽  
M. D. Flythe ◽  
P. Zamani ◽  
G. Khodakaramian

Gas (CO2 and CH4) and ammonia production in the rumen represent major sources of lost carbon and nitrogen, respectively. The essential oils of some plants have been shown to decrease gas and ammonia production by selectively inhibiting rumen microbes. Particularly, those of Zataria multiflora (ZEO; thymol 21%, carvacrol 32%) and Mentha spicata (SEO; carvone 55%) were evaluated in vitro as ruminant-feed additives. The experiments employed mixed rumen microbes and a hyper-ammonia-producing bacterium (HAP) isolated from the rumen of a Mehraban sheep. Both ZEO and SEO decreased in vitro fibre digestibility and also gas production by mixed rumen microbes that were fermenting a typical growing-lamb diet. ZEO decreased ammonia concentration in mixed culture of rumen microbes, but SEO exerted the opposite effect. A bacterial isolate (MT8) was obtained from the rumen of a Mehraban sheep, and the 16S rRNA gene sequence indicated that it was most closely related to Clostridium bifermentans. Isolate MT8 exhibited rapid ammonia production when peptides were the growth substrate, which indicated that MT8 was a HAP. Both oils inhibited the growth and ammonia production of isolate MT8. However, ZEO decreased ammonia production at lower doses, and to a greater degree, than did SEO. These results indicated that both essential oils could potentially be used to modulate rumen fermentation. The detrimental effects on fibre digestion could be problematic in high-forage diets, and this requires further investigation. Isolate MT8 is the first described HAP from the Mehraban sheep rumen. Results on ammonia production by isolate MT8 and mixed rumen microbes indicate differential mode of action of each oil on this parameter.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 298
Author(s):  
Camila da Silva Zornitta ◽  
Luis Carlos Vinhas Ítavo ◽  
Camila Celeste Brandão Ferreira Ítavo ◽  
Geraldo Tadeu dos Santos ◽  
Alexandre Menezes Dias ◽  
...  

This study aimed at examining the effects of rumen inoculum of steers receiving different combinations of ionophore and probiotics in their diets on in vitro gas production of corn silage. The fitting of gas production was performed with five mathematical models and its kinetics was evaluated. Four crossbred steers (403.0 ± 75.5 kg body weight) with ruminal cannula were assigned to a 4 × 4 Latin square design. The additives used were Monensin sodium (Rumensin® 100, 3 g/day), Bacillus toyonensis (Micro-Cell Platinum® 109, 1 g/day) and Saccharomyces cerevisiae boulardii (ProTernative®20, 0.5 g/day). Additives were arranged into the following treatments, supplied daily into total mixed diet: (1) Monensin; (2) Monensin + B. toyonensis; (3) Monensin + S. boulardii; and (4) B. toyonensis + S. boulardii. The gas production data were fitted into the models of Gompertz, Groot, Ørskov, Brody, Richards, and Dual-pool Logistic. A perfect agreement between observed and predicted values in curves of accumulated in vitro gas production was observed in the Groot and Richards models, with higher coefficient of determination (R2 = 0.770 and 0.771, respectively), concordance correlation coefficient (CCC = 0.871 and 0.870, respectively), and root mean square error of prediction (RMSEP = 1.14 and 1.15, respectively). Evaluating the feed additives throughout the Groot model, the B. toyonensis + S. boulardii treatment presented higher VF (12.08 mL/100 mg of DM; p = 0.0022) than Monensin and Monensin + S. boulardii (9.16 and 9.22 mL/100 mg of DM, respectively). In addition, the fractional rate of gas production (k) was higher (p = 0.0193) in B. toyonensis + S. boulardii than in Monensin, not presenting a statistical difference (p > 0.05) from the other two treatments. Additionally, with the time of beginning to gas production, the lag time (λ), was greater (p < 0.001) with Monensin and Monensin + B. toyonensis than with Monensin + S. boulardii and B. toyonensis + S. boulardii. The combination of Monensin and probiotics (B. toyonensis + S. boulardii) resulted in better kinetics of degradation of corn silage, being that the Groot and Richards models had the best fit for estimates of the in vitro gas production data of corn silage tested with different feed additive combinations.


Sign in / Sign up

Export Citation Format

Share Document