scholarly journals Preliminary in vitro screening of some spices and medicinal plants from Edo and Rivers States, Nigeria for reducing enteric methane production in ruminants

2020 ◽  
Vol 46 (2) ◽  
pp. 258-268
Author(s):  
M. A. Bamikole ◽  
O. J. Babayemi ◽  
A. A. Lamidi ◽  
B. A. Ayinde ◽  
U. J. Ikhatua ◽  
...  

Methane gas produced by ruminants during feed fermentation contributed to global warming as well as poor efficiency of food utilization. Mitigating ruminal methane production through anti-microbial feed additive has serious health implications. A preliminary study of the potential of medicinal plants and spices from Edo and Rivers State, as possible replacement to antibiotic feed additives was carried out. Medicinal plants and spices were purposefully sampled, dried at 40oC, milled and 10 mg was added with 190 mg of substrate in a preweighed nylon incubation bags. Bags and their contents were incubated using 30 mL of buffered rumen liquor in 100 mL syringes following the standard procedure of in vitro fermentation. Variables monitored were 24h total gas volume, short chain fatty acids (SCFA) methane (CH4 ) gas, dry matter degradability (DMD) as well as some chemical, cell wall and anti-nutritive components. Results revealed that adding the medicinal plants and spices as feed additives did not depress gas production in most cases (19.5 – 29.50 mL, 17.75 – 30.00 mL and 12.00 – 29.00 mL for Edo medicinal plants, Edo spices and Rivers medicinal plants respectively) and also did not depress DMD (> 50%). Azadirachta indica stem reduced CH4 production mostly by 53.56% while Dennttia tripetala did by 47.69% among the Edo medicinal plants and spices, respectively. In Rivers State, Amaranthus spinosus gave the highest value of 60.33% CH4 reduction. In the same bracket of similar and good CH4 reduction potentials were Alstonia boonei leaves (49.06%), Newbouldia laevis root (41.50%), Euphorbia heterophyla (37.97%), Allium crispum (47.31%), Allium cepa (46.80%), Aframomum mueguata (46.54%), Capsicum annum (47.32%), Ageratum conyzoides (56.52%), Lagenaria breviflora (48.03%) and Centrosema molle (45.08%). All the medicinal plant and spices with potential for CH4 reduction had corresponding high SCFA values (0.46 – 0.65 Mmol) with tannin (%) and saponin (%) contents of 0.011 – 17.50 and 0.01 – 2.40 respectively. Conclusively, the medicinal plants and spices demonstrated good potentials for reducing rumen methane production in vitro and may be subjected to further in vivo studies.

2014 ◽  
Vol 54 (10) ◽  
pp. 1770 ◽  
Author(s):  
P. N. Chatterjee ◽  
D. N. Kamra ◽  
N. Agarwal ◽  
A. K. Patra

Tropical plants rich in secondary metabolites have the potential to modulate rumen fermentation for more efficient food production with reduced environmental impact. In the present study after extensive screening, three tropical tree leaves (Bahunia variegata, Psidium guajava and Cannabis indica) and three herbs (Cinnamomum zeylanicum, Trachyspermum ammi and Cinnamomum tamala) were selected to evaluate their effect on buffalo rumen fermentation. Total gas production, substrate degradability, volatile fatty acid pattern and enzyme activities were not affected by any of the plants tested in this study. However, methane production was lowered (P ≤ 0.05) due to inclusion of P. guajava leaves. Anti-methanogenic/anti-protozoal metabolites present in tropical plants seem to be better extracted by ethanol solvent and accordingly the best performing plant i.e. different levels of P. guajava extract was used for further evaluation. Both the methane inhibition and defaunating action of ethanol extract of P. guajava were found to be dose dependent. In conclusion, leaves of P. guajava appear to be a promising plant feed additive for decreasing methane production without affecting feed degradability in the rumen.


2021 ◽  
Vol 33 ◽  
pp. 04009
Author(s):  
Asih Kurniawati ◽  
Muhlisin Muhsin Al Anas

The study was designed to determine the effect of a candidate natural feed additive on the kinetics of gas production as a representation of feed degradability and methane produced during rumen fermentation. Three blends of essential oil (BEO) as candidates for feed additives were formulated using pine and eucalyptus essential oils in the following ratios: 75:25, 50:50, and 25:75 for BEO1, BEO2, and BEO3, respectively. Every BEO was added to the batch fermentation system at dosages of 0, 100, and 200 l/l in the medium. Furthermore, an in vitro gas production technique was used to simulate rumen feed fermentation. According to the gas production kinetics, all BEO additives did not affect the total potential gas produced, as well as the potential gas produced from the soluble and insoluble substrate. The rates of gas production were similar among treatments. Furthermore, the addition of BEO did not affect the total volume of gas produced during fermentation. Meanwhile, BEO1 at 200 l/l dose and BEO 3 at 100 l/l dose significantly reduced methane production (P0.05). In conclusion, the BEO1 and BEO 3 at dosages of 200 and 100 l/l, respectively, had the potential as a feed additive to reduce methane production without a negative effect on nutrient digestibility.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 298
Author(s):  
Camila da Silva Zornitta ◽  
Luis Carlos Vinhas Ítavo ◽  
Camila Celeste Brandão Ferreira Ítavo ◽  
Geraldo Tadeu dos Santos ◽  
Alexandre Menezes Dias ◽  
...  

This study aimed at examining the effects of rumen inoculum of steers receiving different combinations of ionophore and probiotics in their diets on in vitro gas production of corn silage. The fitting of gas production was performed with five mathematical models and its kinetics was evaluated. Four crossbred steers (403.0 ± 75.5 kg body weight) with ruminal cannula were assigned to a 4 × 4 Latin square design. The additives used were Monensin sodium (Rumensin® 100, 3 g/day), Bacillus toyonensis (Micro-Cell Platinum® 109, 1 g/day) and Saccharomyces cerevisiae boulardii (ProTernative®20, 0.5 g/day). Additives were arranged into the following treatments, supplied daily into total mixed diet: (1) Monensin; (2) Monensin + B. toyonensis; (3) Monensin + S. boulardii; and (4) B. toyonensis + S. boulardii. The gas production data were fitted into the models of Gompertz, Groot, Ørskov, Brody, Richards, and Dual-pool Logistic. A perfect agreement between observed and predicted values in curves of accumulated in vitro gas production was observed in the Groot and Richards models, with higher coefficient of determination (R2 = 0.770 and 0.771, respectively), concordance correlation coefficient (CCC = 0.871 and 0.870, respectively), and root mean square error of prediction (RMSEP = 1.14 and 1.15, respectively). Evaluating the feed additives throughout the Groot model, the B. toyonensis + S. boulardii treatment presented higher VF (12.08 mL/100 mg of DM; p = 0.0022) than Monensin and Monensin + S. boulardii (9.16 and 9.22 mL/100 mg of DM, respectively). In addition, the fractional rate of gas production (k) was higher (p = 0.0193) in B. toyonensis + S. boulardii than in Monensin, not presenting a statistical difference (p > 0.05) from the other two treatments. Additionally, with the time of beginning to gas production, the lag time (λ), was greater (p < 0.001) with Monensin and Monensin + B. toyonensis than with Monensin + S. boulardii and B. toyonensis + S. boulardii. The combination of Monensin and probiotics (B. toyonensis + S. boulardii) resulted in better kinetics of degradation of corn silage, being that the Groot and Richards models had the best fit for estimates of the in vitro gas production data of corn silage tested with different feed additive combinations.


2020 ◽  
Vol 13 (3) ◽  
pp. 586-592 ◽  
Author(s):  
G. Thirumalaisamy ◽  
Pradeep Kumar Malik ◽  
Atul P. Kolte ◽  
Raghavendra Bhatta

Aim: The present study was undertaken to evaluate the effect of variable levels of silkworm pupae oil and roughage: concentrate ratio on in vitro methane production, fermentation characteristics, and rumen protozoa population. Materials and Methods: In vitro gas production study (24 h) was performed with graded levels of silkworm pupae oil, namely, 0.5, 1, 2, 4, and 5% of the basal diet and four variable dietary regimes consisting roughage and concentrate in different proportions (70:30, 60:40, 50:50, and 40:60). At the end of incubation, gas samples were analyzed for methane, while fermented rumen liquor was used for protozoa enumeration. A separate set of incubations was carried out for the determination of in vitro dry matter digestibility. Results: Results from the in vitro studies revealed no adverse impact of the silkworm pupae oil supplementation up to 2% level on total gas production. However, supplementation beyond 2% has shown a reduction in total gas production. Incubation with variable levels (0.5-5%) of silkworm pupae oil with different dietary regimes indicated negligible (3-5%) to a substantial reduction (25-30%) on methane production. A graded decrement in methane production was recorded with increasing levels of silkworm pupae oil. Similarly, the protozoal populations were decreased from 10 to 51.5% with graded levels of silkworm pupae oil in different dietary regimes as studies did not reveal any significant (p>0.05) variation between 2 and 4% of oil supplementation. Conclusion: The silkworm pupae oil supplementation at 2% level decreases methane production by 12-15% without any adverse impact on feed fermentation. Oil supplementation may have a more pronounced effect on methane reduction if added to high roughage diet at in vitro conditions. However, in vivo, studies in ruminants are warranted to confirm the methane reduction with silkworm pupae oil supplementation.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 471-472
Author(s):  
Ana Paula Tarozo ◽  
Annelise Aila G Gomes Lobo ◽  
Yuli Andrea A Peña Bermudez ◽  
Danny Alexander Rojas Moreno ◽  
Rafaela Zuliani Spalato ◽  
...  

Abstract Currently, the use of feed additives appears as an alternative in reducing the environmental impact of animal agriculture, reducing the emission of greenhouse gases and increasing the acceptability of exports in international trade. Thus, the objective of the present study was to evaluate the in vitro rumen fermentation parameters by adding 4.5% ammonium nitrate and 30 ppm of the additive sodium monensin to beef cattle diets, searching for the best alternative to mitigate methane production. The experiment was performed in an in vitro gas production system, and the fermentation kinetics, methanogenesis and short-chain fatty acid (SCFA) production were studied. Regarding methanogenesis, it was observed that the diet with ammonium nitrate showed higher in vitro degradability in DM (P = 0.017) and lower methane production (in ml/g of DM; P = 0.0088), compared to the diet with sodium monensin. Considering the fermentation kinetics, it can be stated that acetate production in molar (%) was lower in control and monensin diets, and higher in nitrate and nitrate + monensin diets (P &lt; 0.0001). It is concluded that both treatments ammonium nitrate + sodium monensin and ammonium nitrate alone have mitigating effect on methane emission, when compared to the control treatment. However, ammonium nitrate is more effective in this regard, producing less methane in vitro and having no negative effect on rumen fermentation parameters.


2015 ◽  
Vol 6 (3) ◽  
pp. 353-360 ◽  
Author(s):  
S.S. Dagar ◽  
N. Singh ◽  
N. Goel ◽  
S. Kumar ◽  
A.K. Puniya

In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.


2021 ◽  
Author(s):  
Dinh Van Dung ◽  
Le Duc Thao ◽  
Le Duc Ngoan ◽  
Le Dinh Phung ◽  
Hynek Roubík

Abstract This study aimed to evaluate the effects of biochar produced from tropical biomass resources (rice straw, corncob and bamboo) at different processing temperatures (300, 500 and 700oC) on in vitro rumen fermentation and methane production. Treatments were arranged as a 3x3 factorial with three biomass resources and three biochar processing temperatures. Added biochar occupied 3% of the substrate (DM basic). 250 mg of the air-dried substrate was incubated in 120 ml bottles, which contained 25 ml of mixed rumen fluid and buffer mineral solution. Total gas and methane production, in vitro digestibility of DM, OM, and in vitro rumen fermentation characteristics were determined at three-time points: 4, 24 and 48 hours of the incubation. Results showed that biomass resources and processing temperatures affected gas production at 4, 24 and 48 hours of the incubation (P < 0.02). Interactions between biomass resources and processing temperatures affected gas production at 4 hours (P = 0.06) and 24 hours (P = 0.001). Biomass resources and processing temperatures affected methane production at different time points of the incubation, except the effect of biomass resources at 24 hours (P = 0.406). Increased processing temperature from 300 to 700oC reduced gas and methane production (P < 0.05). Biomass resources affected OM digestibility after 4 and 24 hours of incubation. Processing temperatures and their interaction with biomass resources affected OM digestibility after 48 hours of incubation (P < 0.001). NH3-N concentrations at 24 and 48h were highest for corncob, then rice straw, and lowest for bamboo tree derived biochar (P < 0.05). Increased processing temperatures resulted in higher NH3-N concentrations at 24 and 48 hours of incubation (P < 0.05). To mitigate methane production, biomass resources and processing temperatures should be considered when utilising biochar as feed additive in ruminant diets.


2020 ◽  
Vol 50 (7) ◽  
Author(s):  
Rayudika Aprilia Patindra Purba ◽  
Chalermpon Yuangklang ◽  
Pramote Paengkoum

ABSTRACT: Piper betle L. is edible plant richer in polyphenols that might improve feed utilization in rumen diet. The objective of the present study was to investigate the effect of various Piper betle L. powder (PL) doses on in vitro rumen microorganisms, ruminal biogas and fermentation end-product production, and biohydrogenation including lipolysis-isomerization. The completely randomized design used five levels of PL supplementation (0, 25, 50, 75 and 100 mg DM) incubated with 400 mg of a basal substrate of Pangola hay and concentrate (50:50). The matrix compounds (g/kg DM) of 0.27 catechin, 0.11 rutin, 3.48 quercetin, 0.41 apigenin, 0.04 myricetin, 0.27 kaempferol, 0.76 eugenol and 0.22 caryophyllene derived from PL altered the fermentation pattern, with an increase in degradable nutrients and total volatile fatty acids and acetogenesis without shifting pH during fermentation. These values promoted in vitro gas production, with higher carbon dioxide and lower methane production. Although, hydrogen recovery from lipolysis-isomerization in biohydrogenation was limited, PL successfully promoted stearic acid (C18:0) accumulation by changing the biohydrogenation pathway of fatty acids, causing more C18:1 trans-11 rather than C18:2 trans-11, cis-15. Consequently, this resulted in more conjugated linoleic acid (CLA) cis-9, trans-11, CLA trans-10, cis-12 and CLA trans-11, cis-13. Enhanced PL supply increased total bacteria and fungal zoospores due to a reduction in rumen protozoa. In conclusion, our results demonstrated that PL is a feed additive with potential for ruminants, promising improved ruminal fermentation and biohydrogenation, while reducing methane production.


2021 ◽  
Vol 888 (1) ◽  
pp. 012074
Author(s):  
W A Hartina ◽  
R Ridwan ◽  
D Diapari ◽  
R Fidriyanto ◽  
A Jayanegara

Abstract The effects of feed additives are increasing feed digestibility, balance of rumen microbial community, stimulating the immune response and livestock productivity. This study aimed to determine the effects of feed additives combination in the rumen fermentation. The method used in this study was a block randomized design with 9 treatments and 3 replications. The experiment using Theodorou In vitro method for 48 hours with parameters such as pH, kinetics gas and methane production, DMD, OMD, NH3, and partial VFA. The treatment were P0; control (Basal Diet 70% Concentrate + 30% Forages), P1; P0 + Premix, P2; P1 + Probiotic, P3; P1 + Enzyme, P4; P1 + Plant Extract, P5; P1 + (Probiotics + Enzyme), P6; P1 + (Probiotics + Plant Extract), P7; P1 + (Probiotic + Enzyme + Plant Extract), and P8; P1 + (Enzyme + Plant Extract). The results showed kinetics gas, methane production, NH3, and partial VFA were significantly affected (P <0.05), while the value of pH, DMD, and OMD was not significant. In conclusion, the addition of mix feed additives can affect the kinetics gas and methane production. However, it does not affect the level of pH, dry matter and organic matter digestibility.


2016 ◽  
Vol 56 (3) ◽  
pp. 402 ◽  
Author(s):  
Kyoung Hoon Kim ◽  
Selvaraj Arokiyaraj ◽  
Jinwook Lee ◽  
Young Kyoon Oh ◽  
Ho Young Chung ◽  
...  

The objective of this study was to evaluate the anti-methanogenic effect of rhubarb (Rheum spp.) on in vitro, in vivo, and bacterial community composition using Quantitative Insights into Microbial Ecology sequencing. Rhubarb root powder was tested at different concentrations (0, 0.33, 0.67, and 1.33 g/L) in vitro, and all incubations were carried out in triplicate two runs on separate days. Concentrations of 0.67 and 1.33 g/L rhubarb significantly (P < 0.05) reduced methane production and the acetate : propionate ratio compared with those of the Control, without adverse effects on total volatile fatty acids and total gas production. In the second in vivo trial, four Hanwoo (Korean native) steers (live bodyweight, 556 ± 46 kg) with a ruminal cannula were housed individually in metabolic stalls and fed a basal diet twice daily in equal amounts at 0900 hours and 2100 hours. The before rhubarb treatment (before treatment) duration was 24 days for all steers; 14 days were used for diet adaptation and 10 days were used for gas samples collected 1, 2, and 3 h after the morning feeding on Days 3, 5, 7, and 9. We used three syringe needles passed through the ruminal cannula stopper at different time points as a simple and rapid method to sample rumen gas. Thereafter, three mesh bags containing 30 g of sliced rhubarb root each were placed at different depths in the rumen of each steer for 14 days (after treatment), and gas samples were collected on Days 4, 7, 10, 12, and 13. The results showed a significant (P < 0.05) decrease in methane concentration from the rhubarb-treated steers and provide the evidence that this method would be useful for in vivo screening of anti-methanogenic feed additives or plant material. Furthermore, 16s RNA sequencing after treatment showed increases in the numbers of Prevotella, and Lactobacillus, but decreases in Methanobrevibacter. In conclusion, rhubarb had an anti-methanogenic effect in vitro and in vivo, and the increase in the number of Prevotella shifted ruminal fermentation towards propionate production.


Sign in / Sign up

Export Citation Format

Share Document