Greenhouse gas emissions of Canadian beef production in 1981 as compared with 2011

2016 ◽  
Vol 56 (3) ◽  
pp. 153 ◽  
Author(s):  
G. Legesse ◽  
K. A. Beauchemin ◽  
K. H. Ominski ◽  
E. J. McGeough ◽  
R. Kroebel ◽  
...  

The present study compared the greenhouse gas (GHG) emissions, and breeding herd and land requirements of Canadian beef production in 1981 and 2011. In the analysis, temporal and regional differences in feed types, feeding systems, cattle categories, average daily gains and carcass weights were considered. Emissions were estimated using life-cycle assessment (cradle to farm gate), based primarily on Holos, a Canadian whole-farm emissions model. In 2011, beef production in Canada required only 71% of the breeding herd (i.e. cows, bulls, calves and replacement heifers) and 76% of the land needed to produce the same amount of liveweight for slaughter as in 1981. Compared with 1981, in 2011 the same amount of slaughter weight was produced, with a 14% decline in CH4 emissions, 15% decline in N2O emissions and a 12% decline in CO2 emissions from fossil fuel use. Enteric CH4 production accounted for 73% of total GHG emissions in both years. The estimated intensity of GHG emissions per kilogram of liveweight that left the farm was 14.0 kg CO2 equivalents for 1981 and 12.0 kg CO2 equivalents for 2011, a decline of 14%. A significant reduction in GHG intensity over the past three decades occurred as a result of increased average daily gain and slaughter weight, improved reproductive efficiency, reduced time to slaughter, increased crop yields and a shift towards high-grain diets that enabled cattle to be marketed at an earlier age. Future studies are necessary to examine the impact of beef production on other sustainability metrics, including water use, air quality, biodiversity and provision of ecosystems services.


2015 ◽  
Vol 12 (18) ◽  
pp. 15301-15336 ◽  
Author(s):  
D. E. Pelster ◽  
M. C. Rufino ◽  
T. Rosenstock ◽  
J. Mango ◽  
G. Saiz ◽  
...  

Abstract. Few field studies examine greenhouse gas (GHG) emissions from African agricultural systems resulting in high uncertainty for national inventories. We provide here the most comprehensive study in Africa to date, examining annual CO2, CH4 and N2O emissions from 59 plots, across different vegetation types, field types and land classes in western Kenya. The study area consists of a lowland area (approximately 1200 m a.s.l.) rising approximately 600 m to a highland plateau. Cumulative annual fluxes ranged from 2.8 to 15.0 Mg CO2-C ha−1, −6.0 to 2.4 kg CH4-C ha−1 and −0.1 to 1.8 kg N2O-N ha−1. Management intensity of the plots did not result in differences in annual fluxes for the GHGs measured (P = 0.46, 0.67 and 0.14 for CO2, N2O and CH4 respectively). The similar emissions were likely related to low fertilizer input rates (≤ 20 kg ha−1). Grazing plots had the highest CO2 fluxes (P = 0.005); treed plots were a larger CH4 sink than grazing plots (P = 0.05); while N2O emissions were similar across vegetation types (P = 0.59). This case study is likely representative for low fertilizer input, smallholder systems across sub-Saharan Africa, providing critical data for estimating regional or continental GHG inventories. Low crop yields, likely due to low inputs, resulted in high (up to 67 g N2O-N kg−1 aboveground N uptake) yield-scaled emissions. Improving crop production through intensification of agricultural production (i.e. water and nutrient management) may be an important tool to mitigate the impact of African agriculture on climate change.



2021 ◽  
Vol 13 (5) ◽  
pp. 2612
Author(s):  
Alun Scott ◽  
Richard Blanchard

Greenhouse gas (GHG) emissions from dairy farms are significant contributors to global warming. However, much of the published work on GHG reduction is focused on either methane (CH4) or nitrous oxide (N2O), with few, if any, considering the interactions that changes to farming systems can have on both gases. This paper takes the raw data from a year of activity on a 300-cow commercial dairy farm in Northern Ireland to more accurately quantify GHG sources by use of a simple predictive model based on IPCC methodology. Differing herd management policies are examined together with the impact of integrating anaerobic digestion (AD) into each farming system. Whilst significant success can be predicted in capturing CH4 and carbon dioxide (CO2) as biogas and preventing N2O emissions, gains made can be lost in a subsequent process, negating some or all of the advantage. The process of extracting value from the captured resource is discussed in light of current farm parameters together with indications of other potential revenue streams. However, this study has concluded that despite the significant potential for GHG reduction, there is little incentive for widespread adoption of manure-based farm-scale AD in the UK at this time.



2018 ◽  
Vol 98 (4) ◽  
pp. 833-844 ◽  
Author(s):  
Getahun Legesse ◽  
Roland Kroebel ◽  
Aklilu W. Alemu ◽  
Kim H. Ominski ◽  
Emma J. McGeough ◽  
...  

The present study compared ammonia (NH3) emissions from Canadian beef production in 1981–2011. Temporal and regional differences in cattle categories, feed types and management systems, average daily gains, carcass weights, and manure handling practices were considered. A scenario-based sensitivity analysis in 2011 estimated the impact of substituting corn dried distillers’ grains with solubles (DDGS) for grain in feedlot diets. On average, 22% of the total nitrogen (N) intake was lost as ammoniacal nitrogen (NH3-N) in both years. Manure emission sources were consistent across years, averaging 12%, 40%, 28%, and 21% for grazing, confinement, storage, and land spreading, respectively. Emissions per animal in 1981 and 2011 were 16.0 and 18.4 kg NH3 animal−1 yr−1, respectively. On an intensity basis, kilogram of NH3 emitted per kilogram of beef decreased 20%, from 0.17 in 1981 to 0.14 in 2011. This reduction was attributed to increases in reproductive efficiency, average daily gain and carcass weight, and improved breeding herd productivity. In 2011, substituting DDGS for grain in feedlot diets increased total NH3 emissions and losses per animal. Although addition of by-products from the bioethanol industry can lower diet costs, it will be at the expense of an increase in NH3 emissions.



2021 ◽  
Vol 26 (4) ◽  
pp. 499-510
Author(s):  
Helena Lina Susilawati ◽  
Anicetus Wihardjaka ◽  
Nurhasan Nurhasan ◽  
Prihasto Setyanto

Low nitrogen efficiency is one of the sources of greenhouse gas (GHG) emissions from rice fields. Methane (CH4) and nitrous oxide (N2O) emissions could be controlled by nitrification inhibitors (NI). However, NI that has been commercialized is expensive. Therefore, some natural materials should be developed as NI that is low cost, easy to use, low N2O and CH4, and eco-friendly. The objective of this study was to observe the effect of natural NI on the production potential of CH4 and N2O from paddy soil. The experiment in the laboratory was arranged in a factorial design (2 × 7 × 3 replication). The first factor was soil types (inceptisols and vertisols), and the second factor was natural NI (control, Cocos nucifera, Camellia sinensis, Coffea robusta, Curcuma domestica, Ageratum conyzoides). The results showed that the average CH4 production from the natural NI in the inceptisols and vertisols ranged 0,014-1,710 mg CH4 g soil-1 and 0,002-0,337 mg CH4 g soil-1, respectively. Application of natural NI reduced 32-69% CH4 production compare to control. Redox potential affected CH4 production. The chemical compound of the natural NI affected CH4 production in the soil. The application of coffee waste, coconut husk, tea waste, and Ageratum conyzoides reduced 60,71; 54,61; 64,83 dan 64,16% of N2O production in Inceptisols compare to control, respectively. Application of natural NI could contribute to save the environment because it decreased GHG production in paddy soil.   Keywords: greenhouse gas, inceptisols, incubation experiment, natural nitrification inhibitors, vertisols



2020 ◽  
Author(s):  
Xinyu Liu ◽  
Xixi Lu ◽  
Ruihong Yu ◽  
Hao Xue ◽  
Zhen Qi ◽  
...  

Abstract. Riparian wetlands play a significant role in regulating carbon and nitrogen cycles. Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. In this study, we analyzed the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from riparian wetlands in the Xilin River Basin to understand the role of these ecosystems in greenhouse gas (GHG) emissions. Moreover, the impact of the catchment hydrology and soil property variations on GHG emissions over time and space were evaluated. Our results demonstrate that riparian wetlands emit larger amounts of CO2 (335–2790 mg m−2 h−1 in August and 72–387 mg m−2 h−1 in October) than CH4 and N2O to the atmosphere due to high plant and soil respiration. The results also reveal clear seasonal variations and spatial patterns along the transects and in the longitudinal direction. N2O emissions showed a spatiotemporal pattern similar to that of CO2 emissions. Near-stream sites were the only sources of CH4 emissions, while the other sites served as sinks for these emissions. Soil moisture content and soil temperature were the essential factors controlling the GHG emissions, and abundant aboveground biomass promoted the CO2, CH4, and N2O emissions. Moreover, compared to different types of grasslands, riparian wetlands were the potential hotspots of GHG emissions in the Inner Mongolian region. Degradation of downstream wetlands has resulted in the loss of the soil carbon pool by approximately 60 %, reducing CO  emissions by approximately 35 %, and shifting the CH4 and N2O emissions from the source to the sink. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect the GHG emissions.



Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.



Author(s):  
Moneim Massar ◽  
Imran Reza ◽  
Syed Masiur Rahman ◽  
Sheikh Muhammad Habib Abdullah ◽  
Arshad Jamal ◽  
...  

The potential effects of autonomous vehicles (AVs) on greenhouse gas (GHG) emissions are uncertain, although numerous studies have been conducted to evaluate the impact. This paper aims to synthesize and review all the literature regarding the topic in a systematic manner to eliminate the bias and provide an overall insight, while incorporating some statistical analysis to provide an interval estimate of these studies. This paper addressed the effect of the positive and negative impacts reported in the literature in two categories of AVs: partial automation and full automation. The positive impacts represented in AVs’ possibility to reduce GHG emission can be attributed to some factors, including eco-driving, eco traffic signal, platooning, and less hunting for parking. The increase in vehicle mile travel (VMT) due to (i) modal shift to AVs by captive passengers, including elderly and disabled people and (ii) easier travel compared to other modes will contribute to raising the GHG emissions. The result shows that eco-driving and platooning have the most significant contribution to reducing GHG emissions by 35%. On the other side, easier travel and faster travel significantly contribute to the increase of GHG emissions by 41.24%. Study findings reveal that the positive emission changes may not be realized at a lower AV penetration rate, where the maximum emission reduction might take place within 60–80% of AV penetration into the network.



Author(s):  
Swithin S. Razu ◽  
Shun Takai

The aim of this paper is to study the impact of public government policies, fuel cell cost, and battery cost on greenhouse gas (GHG) emissions in the US transportation sector. The model includes a government model and an enterprise model. To examine the effect on GHG emissions that fuel cell and battery cost has, the optimization model includes public policy, fuel cell and battery cost, and a market mix focusing on the GHG effects of four different types of vehicles, 1) gasoline-based 2) gasoline-electric hybrid or alternative-fuel vehicles (AFVs), 3) battery-electric (BEVs) and 4) fuel-cell vehicles (FCVs). The public policies taken into consideration are infrastructure investments for hydrogen fueling stations and subsidies for purchasing AFVs. For each selection of public policy, fuel cell cost and battery cost in the government model, the enterprise model finds the optimum vehicle design that maximizes profit and updates the market mix, from which the government model can estimate GHG emissions. This paper demonstrates the model using FCV design as an illustrative example.



2021 ◽  
Vol 99 (10) ◽  
Author(s):  
Agbee L Kpogo ◽  
Jismol Jose ◽  
Josiane C Panisson ◽  
Atta K Agyekum ◽  
Bernardo Z Predicala ◽  
...  

Abstract The objective of this project was to determine the impact of feeding growing pigs with high wheat millrun diets supplemented with a multi-carbohydrase enzyme (amylase, cellulase, glucanase, xylanase, and invertase activities) on nutrient digestibility, growth performance, and greenhouse gas (GHG) output (carbon dioxide, CO2; nitrous oxide, N2O; methane, CH4). Three experiments were conducted utilizing six treatments arranged as a 3 × 2 factorial (0%, 15%, or 30% wheat millrun; with or without enzyme) for the digestibility experiment or as a 2 × 2 factorial (0% or 30% wheat millrun; with or without enzyme) for the performance and GHG experiments. The digestibility, performance, and GHG experiments utilized 48 individually housed pigs, 180 pigs housed 5 per pen, or 96 pigs housed 6 per chamber, respectively. Increasing wheat millrun up to 30% in the diet of growing pigs resulted in decreased energy, nitrogen (N) and phosphorus (P) apparent total tract digestibility and net energy content (P < 0.01). Overall, average daily gain (ADG) and gain to feed ratio were reduced in pigs fed wheat millrun (P < 0.05). Enzyme supplementation had minimal effects on the digestibility or performance parameters measured. Feeding diets with 30% millrun did not affect GHG output (CH4: 4.7 and 4.9; N2O: 0.45 and 0.42; CO2: 1,610 and 1,711 mg/s without or with millrun inclusion, respectively; P > 0.78). Enzyme supplementation had no effect on GHG emissions (CH4: 4.5 and 5.1; N2O: 0.46 and 0.42; CO2: 1,808 and 1,513 mg/s without or with enzymes, respectively; P > 0.51). Overall, the carbohydrase enzyme had minimal effects on parameters measured, regardless of wheat millrun inclusion (P > 0.10). Although energy, N and P digestibility, and ADG were reduced, the inclusion of up to 30% wheat millrun in the diet has no effect on GHG emissions from growing pigs (P > 0.10).



2021 ◽  
Author(s):  
Elsbe von der Lancken ◽  
Victoria Nasser ◽  
Katharina Hey ◽  
Stefan Siebert ◽  
Ana Meijide

<p>The need to sustain global food demand while mitigating greenhouse gases (GHG) emissions is a challenge for agricultural production systems. Since the reduction of GHGs has never been a breeding target, it is still unclear to which extend different crop varieties will affect GHG emissions. The objective of this study was to evaluate the impact of N-fertilization and of the use of growth regulators applied to three historical and three modern varieties of winter wheat on the emissions of the three most important anthropogenic GHGs, i.e. carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). Furthermore, we aimed at identifying which combination of cultivars and management practises could mitigate GHG emissions in agricultural systems without compromising the yield. GHG measurements were performed using the closed chamber method in a field experiment located in Göttingen (Germany) evaluating three historical and three modern winter wheat varieties, with or without growth regulators under two fertilization levels (120 and 240 kg nitrogen ha<sup>-1</sup>). GHG measurements were carried out for 2 weeks following the third nitrogen fertilizer application (where one third of the total nitrogen was applied), together with studies on the evolution of mineral nitrogen and dissolved organic carbon in the soil. Modern varieties showed significantly higher CO<sub>2</sub> emissions (i.e. soil and plant respiration; +23 %) than historical varieties. The soils were found to be a sink for CH<sub>4,</sub> but CH<sub>4</sub> fluxes were not affected by the different treatments. N<sub>2</sub>O emissions were not significantly influenced by the variety age or by the growth regulators, and emissions increased with increasing fertilization level. The global warming potential (GWP) for the modern varieties was 7284.0 ± 266.9 kg CO<sub>2-eq</sub> ha<sup>-1</sup>. Even though the GWP was lower for the historic varieties (5939.5 ± 238.2 kg CO<sub>2</sub>-<sub>eq</sub> ha<sup>-1</sup>), their greenhouse gas intensity (GHGI), which relates GHG and crop yield, was larger (1.5 ± 0.3 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), compared to the GHGI of modern varieties (0.9 ± 0.0 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), due to the much lower grain yield in the historic varieties. Our results suggest that in order to mitigate GHG emissions without compromising the grain yield, the best management practise is to use modern high yielding varieties with growth regulators and a fertilization scheme according to the demand of the crop.</p>



Sign in / Sign up

Export Citation Format

Share Document