On-farm assessment of environmental and management factors influencing wheat grain quality in the Mallee

2002 ◽  
Vol 53 (7) ◽  
pp. 811 ◽  
Author(s):  
Victor Sadras ◽  
David Roget ◽  
Garry O'Leary

We used data from 63 grower-managed wheat crops during 3 growing seasons in the Mallee to explore grain protein responses to environmental and management factors. Allometric coefficients were calculated as the slope of the regression between the mass of log-transformed protein and non-protein grain components to account for the effect of ontogenetic drift on grain protein concentration. Test weight and screenings were also investigated. Grain protein concentration ranged from 8.7 to 16.2%; 90% of crops had less than 5% screenings, and 95% had test weight above 74 kg/hL. Screenings increased and test weight declined with increasing concentration of protein, particularly for protein concentration above 13%. Fourteen cultivars were represented in the sampled crops. In comparison with crops of varieties eligible as Australian Premium White, crops of hard wheats had greater protein content, more screenings, lower test weight, and a greater protein : non-protein allometric coefficient, indicating differences in the pattern of protein allocation between these groups of cultivars. Protein concentration declined with increasing yield at a rate �1%/t.ha. It decreased with increasing seasonal rainfall at a rate of 0.014%/mm, and increased with the proportion of water stored below 0.5 m at a rate of 0.121%/%. Delayed sowing between mid April and mid July generated a size-dependent increase in grain protein concentration of 0.027%/day. Increasing protein content could attenuate the profit lost due to delayed sowing by up to AU$39/ha in hard wheats. Wheat grown after legumes accumulated 64% more protein and 47% more non-protein material in the grain than their counterparts grown after cereal, and grain protein concentrations averaged 13.3 and 12.2% respectively. Protein concentration was unrelated to the amount of nitrogen in the whole soil profile (0-1 m), and weakly associated with the amount of initial nitrogen in the 0-0.1 m soil layer; it increased at a rate of 0.038%/kg N.ha. Chemical constraints in the subsoil probably affected the ability of the crop to use, and contributed to the accumulation of nitrogen in deep soil layers.

2002 ◽  
Vol 82 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. Wang ◽  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. M. DePauw ◽  
J. M. Clarke

Although leaf spotting diseases have been reported to have a negative effect on grain yield and seed characteristics of wheat (Triticum spp.), the magnitude of such effects on wheat grown on dryland in southern Saskatchewan is not known. A fungicide experiment was conducted at Swift Current (Brown soil) and Indian Head (Black soil) from 1997 to 1999 to determine the effect of leaf spotting diseases on yield and seed traits of wheat. Two fungicides, Folicur 3.6F and Bravo 500, were applied at different growth stages on three common wheat (Triticum aestivum L.) and three durum wheat (T. turgidum L. var durum) genotypes. Fungicide treatments generally did not affect yield, kernel weight, test weight or grain protein concentration, and these effects were relatively consistent among genotypes. Folicur applied at head emergence in 1997 and at flag leaf emergence and/or head emergence in 1998 increased yield at Indian Head (P < 0.05). Fungicides applied at and before flag leaf emergence tended to increase kernel weight. Grain protein concentration increased only in treatments of Bravo applications at Indian Head in 1998. These results suggested that under the dryland environment and management in southern Saskatchewan leaf spotting diseases generally have a small effect on yield, kernel weight, test weight and protein concentration. Key words: Wheat, leaf spotting diseases, fungicide, yield


1981 ◽  
Vol 21 (111) ◽  
pp. 424 ◽  
Author(s):  
WM Strong

Eighteen fertilizer trials, each with five levels of nitrogen (N) and three levels of phosphorus (PI, were conducted on black earth soils of the Darling Downs to establish optimal economic rates of N fertilizer in commercial, irrigated wheat crops. The optimal economic rate of N with a fertilizer: wheat price ratio (kg N: kg grain) of 5:l, the yield response of 100 kg/ha of applied N, the yield without fertilizer, and the yield with fertilizer not limiting were calculated from derived yield response relations at each site. A multi-variate regression procedure was used to determine which soil or crop management factors significantly influenced the rate of N needed to optimize wheat yield. Delay in planting after June 1 and the level of residual mineral N in the soil at planting had strong negative effects on the response to fertilizer and the optimal rate of fertilizer required. The results indicate that yields of irrigated wheat may be below the economic optimum because of sub-optimal applications of N. Other soil and management factors such as available soil P and number of irrigations also affected grain yield. At 1 3 sites low protein wheat (< 1 1.4�1~) was produced with all but the highest two rates of N fertilizer and at two sites even the highest rate produced low protein wheat. The effect of N fertilizer applied at planting on grain protein concentration was changed by the yield response to the fertilizer application. Grain protein concentration was curvilinearly related (R2 = 0.81) to relative grain yield (yield as a proportion of the maximum yield); grain protein was at its minimum at a relative yield of 0.5. Although heavy rates of N fertilizer at planting increased grain protein concentration on a few sites, usually these applications led to an inefficient use of N fertilizer; apparent incorporation of fertilizer N into grain decreased with increasing rate of fertilizer.


1984 ◽  
Vol 64 (4) ◽  
pp. 797-804
Author(s):  
CHRISTIANAH O. AJAKAIYE

The changes which occurred in grain protein content with maturity of three sorghum (Sorghum bicolor (L.) Moench) genotypes were investigated at four nitrogen (N) application levels, 0, 35, 70 and 140 kg/ha. Three sorghum genotypes (RCFA × L.187, L.187 and SK 5912) were field-grown at Samaru, Zaria, Nigeria. Grain was sampled at 10, 17, 24 and 67 days after anthesis and grain protein was determined by Kjeldahl methods. The concentration of grain protein of RCFA × L.187 and L.187 increased up to 24 days after anthesis with a peak at 17 days after anthesis in 1977 while in SK 5912, the highest concentration was at 10 days after anthesis in that year. In 1978, the concentration trend was similar to that in 1977 but the behavior of SK 5912 was erratic because an increase in grain protein concentration occurred at 17 days after anthesis only in plants grown on soil supplied with 35 and 70 kg N/ha. In all other treatments, the grain protein concentration of this genotype decreased from 10 to 67 days after anthesis. However, total grain protein yield per hectare increased significantly in all genotypes at harvest over that at 10 days after anthesis.Key words: Sorghum bicolor (L.) Moench, protein content, genotypes, maturity


1986 ◽  
Vol 66 (4) ◽  
pp. 871-876
Author(s):  
J. M. MARTIN ◽  
W. L. ALEXANDER

Wheat (Triticum aestivum L.) breeding programs evaluate germplasm sources and/or segregating progenies comprising a mixture of genotypes. If intergenotypic competition is operating, then performance of mixtures of genotypes may not be indicative of the performance of its pure line components. Our objective was to measure and quantify intergenotypic competition in 1:1 mixtures of eight spring wheat cultivars representing both tall and semidwarf classes. The 28 possible 1:1 biblends plus the eight uniblends were evaluated in a replicated trial in 2 yr at Bozeman, Montana. Grain yield, test weight, and grain protein concentration were measured. Analysis of variance showed the eight cultivars differed as uniblends and for average performance in biblends for all three measured traits. Interactions, deviations of biblends from average performance of the two uniblend components, were detected for test weight and grain protein concentration in the first year and for grain yield in the second year and for grain protein concentration when combined over years. Intergenotypic competition reduced grain yield of biblends compared to uniblends in the second year but not in the first year. Grain protein concentration and test weight did not show a proportionate change in response to the reduced grain yield. General mixing effects isolated for each cultivar showed competitive ability could not be delineated on the basis of height class.Key words: Wheat, Triticum aestivum L., mixtures, competing ability


Crop Science ◽  
2003 ◽  
Vol 43 (5) ◽  
pp. 1671-1679 ◽  
Author(s):  
Paulo C. Canci ◽  
Lexingtons M. Nduulu ◽  
Ruth Dill‐Macky ◽  
Gary J. Muehlbauer ◽  
Donald C. Rasmusson ◽  
...  

2002 ◽  
Vol 82 (4) ◽  
pp. 489-498 ◽  
Author(s):  
B G McConkey ◽  
D. Curtin ◽  
C A Campbell ◽  
S A Brandt ◽  
F. Selles

We examined 1990-1996 crop and soil N data for no-tillage (NT), minimum tillage (MT) and conventional tillage (CT) systems from four long-term tillage studies in semiarid regions of Saskatchewan for evidence that the N status was affected by tillage system. On a silt loam and clay soil in the Brown soil zone, spring what (Triticum aestivum L.) grain yield and protein concentration were lower for NT compared with tilled (CT or MT) systems for a fallow-wheat (F-WM) rotation. Grain protein concentration for continuous wheat (Cont W) was also lower for NT than for MT. For a sandy loam soil in the Brown soil zone, durum (Triticum durum L.) grain protein concentration was similar for MT and NT for both Cont W and F-W, but NT had higher grain yield than MT (P < 0.05 for F-W only). For a loam soil in the Dark Brown soil zone, wheat grain yield for NT was increased by about 7% for fallow-oilseed-wheat (F-O-W) and wheat-oilseed-wheat (W-O-W) rotations. The higher grain yields for NT reduced grain protein concentration by dilution effect as indicated by similar grain N yield. However, at this site, about 23 kg ha-1 more fertilizer N was required for NT than for CT. Elimination of tillage increased total organic N in the upper 7.5 cm of soil and N in surface residues. Our results suggest that a contributing factor to decreased availability of soil N in medium- and fine-textured soils under NT was a slower rate of net N mineralization from organic matter. Soil nitrates to 2.4 m depth did not indicate that nitrate leaching was affected by tillage system. Current fertilizer N recommendations developed for tilled systems may be inadequate for optimum production of wheat with acceptable grain protein under NT is semiarid regions of Saskatchewan. Key words: Tillage intensity, N availability, soil N fractions, N mineralization, crop residue decomposition, grain protein


1996 ◽  
Vol 36 (4) ◽  
pp. 443 ◽  
Author(s):  
MG Mason ◽  
RW Madin

Field trials at Beverley (19911, Salmon Gums (1991; 2 sites) and Merredin (1992; 2 sites), each with 5 rates of nitrogen (N) and 3 levels of weed control, were used to investigate the effect of weeds and N on wheat grain yield and protein concentration during 1991 and 1992. Weeds in the study were grasses (G) and broadleaf (BL). Weeds reduced both vegetative dry matter yield and grain yield of wheat at all sites except for dry matter at Merredin (BL). Nitrogen fertiliser increased wheat dry matter yield at all sites. Nitrogen increased wheat grain yield at Beverley and Merredin (BL), but decreased yield at both Salmon Gums sites in 1991. Nitrogen fertiliser increased grain protein concentration at all 5 sites-at all rates for 3 sites [Salmon Gums (G) and (BL) and Merredin (G)] and at rates of 69 kg N/ha or more at the other 2 sites [Beverley and Merredin (BL)]. However, the effect of weeds on grain protein varied across sites. At Merredin (G) protein concentration was higher where there was no weed control, possibly due to competition for soil moisture by the greater weed burden. At Salmon Gums (G), grain protein concentration was greater when weeds were controlled than in the presence of weeds, probably due to competition for N between crop and weeds. In the other 3 trials, there was no effect of weeds on grain protein. The effect of weeds on grain protein appears complex and depends on competition between crop and weeds for N and for water at the end of the season, and the interaction between the two.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 374
Author(s):  
Marta Aranguren ◽  
Ander Castellón ◽  
Ana Aizpurua

Adequate N fertilisation is crucial to increase the grain protein content (GPC) values in wheat. The recommended level of GPC needed to achieve high-quality bread-making flour should be higher than 12.5%. However, it is difficult to ensure the GPC values that the crop will achieve because N in grain is derived from two different sources: N remobilized into the grain from N accumulated in the pre-anthesis period, and N absorbed from the soil in the post-anthesis period. This study aimed to (i) evaluate the effect of the application of N on the rate of stem elongation (GS30) when farmyard manures are applied as initial fertilisers on GPC and on the chlorophyll meter (CM) values at mid-anthesis (GS65), (ii) establish a relationship between the CM values at GS65 and GPC, and (iii) determine a minimum CM value at GS65 to obtain GPC values above 12.5%. Three field trials were performed in three consecutive growing seasons, and different N fertilisation doses were applied. Readings using the CM Yara N-TesterTM were taken at GS65. The type of initial fertiliser did not affect the GPC and CM values. Generally, the greater the N application at GS30 is, the higher the GPC and CM values are. CM values can help to estimate GPC values only when yields are below 8000 kg ha−1. Additionally, CM values at GS65 should be higher than 700 to achieve high-quality bread-making flour (12.5%) at such yield levels. These results will allow farmers and cooperatives to make better decisions regarding late-nitrogen fertilisation and wheat sales.


2012 ◽  
Vol 4 (11) ◽  
Author(s):  
Ali Hafeez Malik ◽  
Allan Andersson ◽  
Ramune Kuktaite ◽  
Muhammad Yaqub Mujahid ◽  
Bismillah Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document