Assessment of sowing dates and plant densities using CSM-CROPGRO-Soybean for soybean maturity groups in low latitude

Author(s):  
L. S. Sampaio ◽  
R. Battisti ◽  
M. A. Lana ◽  
K. J. Boote

Abstract Crop models can be used to explain yield variations associated with management practices, environment and genotype. This study aimed to assess the effect of plant densities using CSM-CROPGRO-Soybean for low latitudes. The crop model was calibrated and evaluated using data from field experiments, including plant densities (10, 20, 30 and 40 plants per m2), maturity groups (MG 7.7 and 8.8) and sowing dates (calibration: 06 Jan., 19 Jan., 16 Feb. 2018; and evaluation: 19 Jan. 2019). The model simulated phenology with a bias lower than 2 days for calibration and 7 days for evaluation. Relative root mean square error for the maximum leaf area index varied from 12.2 to 31.3%; while that for grain yield varied between 3 and 32%. The calibrated model was used to simulate different management scenarios across six sites located in the low latitude, considering 33 growing seasons. Simulations showed a higher yield for 40 pl per m2, as expected, but with greater yield gain increments occurring at low plant density going from 10 to 20 pl per m2. In Santarém, Brazil, MG 8.8 sown on 21 Feb. had a median yield of 2658, 3197, 3442 and 3583 kg/ha, respectively, for 10, 20, 30 and 40 pl per m2, resulting in a relative increase of 20, 8 and 4% for each additional 10 pl per m2. Overall, the crop model had adequate performance, indicating a minimum recommended plant density of 20 pl per m2, while sowing dates and maturity groups showed different yield level and pattern across sites in function of the local climate.

2012 ◽  
Vol 40 (1) ◽  
pp. 201 ◽  
Author(s):  
Shakeel AHMAD ◽  
Mirza HASANUZZAMAN

Two field experiments were conducted for two years (2000 and 2001) at Agronomic Research Area, University of Agriculture Faisalabad (UAF), Pakistan. There were 15 treatment combinations for experiment-I having three plant densities, viz., one seedling hill-1 (PD1), two seedlings hill-1 (PD2) and three seedlings hill-1 (PD3) and five nitrogen rates, viz., 0, (N0); 50, (N50); 100, (N100); 150, (N150); and 200 (N200) kg N ha-1. Experiment-II also included 15 treatments having three plant densities, viz., one seedling hill-1 (PD1), two seedlings hill-1 (PD2) and three seedlings hill-1 (PD3) and five irrigation regimes, viz., 62.5 cm (I1), 77.5 cm (I2), 92.5 cm (I3), 107.5 cm (I4), and 122.5 cm (I5). A randomized complete block design (RCBD) was employed with three repetitions. The results for experiment-I revealed that the highest biomass (1438 g m-2), grain yield (497 g m-2), crop growth rate (15.36 g m-2 d-1), net assimilation rate (4.24 g m-2 d-1) were observed in the treatment having combination of two seedlings hill-1 and 200 kg N ha-1 (PD2N200). The agronomic and economic nitrogen and PAR use efficiencies were also higher in this treatment. In case of experiment-II, the highest biomass and grain yield were obtained in case of treatment having combination of two seedlings hill-1 and 107.5 cm irrigation regime (PD2I107.5). The irrigation application based water productivity ranged from 0.36 kg mm-3 to 0.61 kg mm-1, irrigation plus precipitation based water productivity ranged from 0.32 kg mm-3 to 0.55 kg mm-3 and evapotranspiration based water productivity ranged from 0.65 kg mm-3 to 0.84 kg mm-3 among 15 treatments combination of plant density and irrigation regimes. This study concludes that for increasing the benefits for the resource-poor growers, the integration of crop management practices is an optimum strategy to substantially increase the resources use efficiency under irrigated semiarid environment.


Author(s):  
Tran Xuan Minh ◽  
Nguyen Cong Thanh ◽  
Tran Hau Thin ◽  
Nguyen Thi Tieng ◽  
Nguyen Thi Huong Giang

Background: Understanding the effects of different plant densities and row spacing on yield and yield components of peanut L14 is essential for designing and adjusting management practices to improve yield. Methods: Five planting densities were tested in Randomized Complete Block Design with three replications in 2019 spring crop on the coastal sandy land area in Dien Chau district, Nghe An, Vietnam. Result: The different density treatments affect the growth, development and yield of the peanut variety L14. With increasing plant density, the number of pod per plant, 100 pods weight, 100 seeds weight decreased, whereas plant height, leaf area index, dry matter production increased. Population yield increased with increasing plant density from the lowest density of 25 plants m-2 (2.78 tons ha-1), reached the highest at 35 plants m-2 (4.53 tons ha-1), then decreasing with increasing plant density. Peanut variety L14 is grown in plant densities and row spacing of 35 plants m-2 (25 cm × 25 cm) and 40 plants m-2 (25 cm × 20 cm) are most appropriate; plants grow, develop better and give a higher yield than other densities under the same conditions.


1982 ◽  
Vol 99 (1) ◽  
pp. 19-23 ◽  
Author(s):  
M. O. A. Fawusi ◽  
S. B. C. Wanki ◽  
D. Nangju

SUMMARYIn field experiments at the International Institute of Tropical Agriculture in Nigeria, two cow-pea cultivars, TVU-1209 and FARV-13 and a composite maize cultivar were intercropped at plant densities of 10000, 20000, 30000 and 40000 plants/ha in a split-plot design. There were four replications of each density. Results showed that increasing cow-pea plant density increased the number of days to flowering but decreased the numbers of branches and of leaves per plant in both monoculture and mixture. Different varietal responses to plant density were observed for other growth measurements. While TVU-1209 yielded the highest dry matter at 20000 plants/ha in monoculture and mixture, FARV-13 did so at 40000 plants/ha in monoculture and at 20000 in mixture. Some yield components decreased while others were unaffected by increasing plant density. Similar response pattern was observed for maize. Both leaf area index and light interception were greater in FARV-13 than in TVU-1209.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 281
Author(s):  
Jian Li ◽  
Man Wu ◽  
Keru Wang ◽  
Bo Ming ◽  
Xiao Chang ◽  
...  

Exploring the maximum grain yields (GYs) and GY gaps in maize (Zea mays L.) can be beneficial for farmer to identify the GY-limiting factors and take adaptive management practices for a higher GY. The objective of this work was to identify the optimum maize plant density range and the ways to narrow maize GY gaps based on the variation of the GYs, dry matter (DM) accumulation and remobilization with changes in plant density. Field experiments were performed at the 71 Group and Qitai Farm in Xinjiang, China. Two modern cultivars, ZhengDan958 and ZhongDan909, were planted at 12 densities, ranging from 1.5 to 18 plants m−2. With increased plant density, single plant DM decreased exponentially, whereas population-level DM at the pre- (DMBS) and post- (DMAS) silking stages increased, and the amount of DM remobilization (ARDM) increased exponentially. Further analysis showed that plants were divided four density ranges: range I (<6.97 plants m−2), in which no DM remobilization occurred, DMBS and DMAS correlated significantly with GY; range II (6.97–9.54 plants m−2), in which the correlations of DMBS, DMAS, and ARDM with GY were significant; range III (9.54–10.67 plants m−2), in which GY and DMAS were not affected by density, DMBS increased significantly, and only the correlation of DMAS with GY was significant; and range IV (>10.67 plants m−2), in which the correlations of DMBS and ARDM with GY decreased significantly, while that of DMAS increased significantly. Therefore, ranges I and II were considered to be DM-dependent ranges, and a higher GY could be obtained by increasing the population-level DMAS, DMAS, and ARDM. Range III was considered the GY-stable range, increasing population-level DMBS, as well as preventing the loss of harvest index were the best way to enhance maize production. Range IV was interpreted as the GY-loss range, and a higher GY could be obtained by preventing the loss of HI and population-level DMAS.


Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 589-593 ◽  
Author(s):  
John T. McGregor ◽  
Roy J. Smith ◽  
Ronald E. Talbert

Field experiments were conducted in 1984 and 1985 at Stuttgart, AR, to investigate the interspecific and intraspecific interference of broadleaf signalgrass densities of 0, 10, 50, 100, and 150 plants/m2with rice. In 1984, significant reductions in rice leaf area index (LAI) occurred 6 weeks after emergence with all broadleaf signalgrass densities. The first reduction in LAI occurred 8 weeks after emergence at the density of 150 plants/m2in 1985. Densities of 50 plants/m2or greater reduced rice dry weight 6 weeks after emergence in 1984, and the highest density of 150 plants/m2reduced rice dry weight 12 weeks after emergence in 1985. Height of rice was reduced by densities of 100 and 150 plants/m2. Linear regression equations indicated that each broadleaf signalgrass plant/m2reduced rough rice yield 18 kg/ha both years. Growth of broadleaf signalgrass was reduced by interspecific and intraspecific interference. The dry weight of broadleaf signalgrass increased at a decreasing rate at plant densities of 100 to 150/m2when grown alone in 1984 and 1985, when a quadratic equation best described the response. Regression equations indicated interspecific interference from rice reduced broadleaf signalgrass dry weight an average of 48 and 81% in 1984 and 1985, respectively. The height of broadleaf signalgrass was greater when grown with rice than when grown alone.


2019 ◽  
Vol 50 (6) ◽  
Author(s):  
Al-Mohmadi & Al-Ani

A field experiment was condueted at the experimental Farm, College of Agriculture University of AL-Anbar in replace location (Abu-Gheaib) in spring season of 2017. While in Fall season it was applied at AL-saqluwiya-Anbar Province 10 km west north of Falluga city to study the effect of four levels of licorice extractor (Glycyrrhiza glabra L.) (0,2,4 and 6) g.L-1 water and three (53,333, 66,666 and 88,888 plant) plant.ha-1. On growth and grain yield of Sorghum cv. Rabih. The experiment was applied using R.C.B.D. arranged in split plots with three replications. levels of plant densities were used as main-plot, while licorice extractor were used as sub-plot. Foliar application of licorice extractor was applied during vegetative growth. The results showed that, high plant density (88888) plant.h-1 significantly increase plant height and leaf area index, while most of traits were not significantly influenced by plant density including grain yield. Results revealed that foliar application of licorice extractor with 2,4,6 g.L-1 of water significantly influenced grain yield in spring season compane with control treatment and it is amounted to (9.62, 9.55 and 9.78) t.h-1 respectively. There were significant interaction between Licorice extractor and plant density in spring and fall season in grain yield. The higher grain yield of 10.31 and 10.33 t.h-1 were obtained when sorghum plants were sowing at hight density and sprayed with Licorice extractor at level          4 g.L-1 respectively


2012 ◽  
pp. 105-110
Author(s):  
Ádám Lente

In the crop season of 2010 (rainy year), we studied the effect of three agrotechnical factors (sowing time, fertilization, plant density) and four different genotypes on the agronomical characteristics of sweet corn on chernozem soil in the Hajdúság. The experiments were carried out at the Látókép Experimental Farm of the University of Debrecen. In the experiment, two sowing dates (27 April, 26 May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and four genotypes (Jumbo, Enterprise, Prelude, Box-R) were used at two plant densities (45 thousand plants ha-1, 65 thousand plants ha-1). The amount of precipitation in the season of 2010 was 184 mm higher, while the average temperature was 0.8 oC higher in the studied months than the average of 30 years. Weather was more favourable for sweet maize at the first sowing date, if we consider the yields, however, if we evaluate the agronomical data and yield elements (number of cobs, cob length and diameter, the number of kernel rows, the number of kernels per row) it can be stated that the size of the fertile cobs was greater at the second sowing date due to the lower number of cobs. The largest number of fertile cobs was harvested in the case of the hybrid Enterprise (72367.9 ha-1) in the higher plant density treatment (65 thousand ha-1) at the fertilization level of N120+PK when the first sowing date was applied. The largest cobs were harvested from the hybrid Box-R (cob weight with husks: 516.7 g, number of kernels in one row: 45.7) at the lower plant density (45 thousand plants ha-1) in the second sowing date treatment. Cob diameter and the number of kernel rows were the highest for the hybrid Prelude.


Author(s):  
Ioannis Roussis, Ioanna Kakabouki, Dimitrios Bilalis

Agronomic practices such as plant density and fertilizer management are referred to comprise crop environment, which influences plant growth, productivity, and ultimately the yield. The objective of the current study was to evaluate the influence of plant density and fertilization on the growth and growth indices of Nigella sativa crop and to determine the association between yield and growth characteristics at both the single plant and crop stand level. The 2-year experiment was laid out in a split-plot design, with three replications, two main plots (200 and 300 plants m-2) and four sub-plots (fertilization treatments: control, compost, farmyard manure and inorganic fertilizer). The highest absolute growth rate (AGR) (0.0321 g day-1) and relative growth rate (RGR) (0.0714 g g-1 day-1) values were recorded when plants subjected to low-density and inorganic fertilization, while the highest crop growth rate (CGR) (8.0342 g m-2 day-1) was obtained under high-plant density and inorganic fertilization. Concerning specific leaf area (SLA), the highest value (196.28 cm2 g-1) was found in inorganic fertilized treatment. Leaf area index (LAI), Leaf area duration (LAD) and Biomass duration (BMD) were positively affected by both plant density and fertilization with the greatest values observed under high-density and fertilization. In conclusion, plant densities higher than 200 plants m-2 lead to higher crop growth, but lower growth of individual plants and decreased seed yield, while the application of inorganic fertilizers increases crop growth and yield as these fertilizers contain higher levels of nitrogen with high solubility and therefore quick availability for the crop than the organic fertilizers.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 579
Author(s):  
Gustavo Castilho Beruski ◽  
Luis Miguel Schiebelbein ◽  
André Belmont Pereira

The potential yield of annual crops is affected by management practices and water and energy availabilities throughout the crop season. The current work aimed to assess the effects of plant population, planting dates and soil covering on yield components of maize. Field experiments were carried out during the 2014–2015 and 2015–2016 growing seasons at areas grown with oat straw, voluntary plants and bare soil, considering five plant populations (40,000, 60,000, 80,000, 100,000 and 120,000 plants ha−1) and three sowing dates (15 September, 30 October and 15 December) for the hybrid P30F53YH in Ponta Grossa, State of Paraná, Brazil. Non-impacts of soil covering or plant population on plant height at the flowering phenological stage were observed. Significant effects of soil covering on yield components and final yield responses throughout the 2014–2015 season were detected. An influence of plant populations on yield components was evidenced, suggesting that, from 80,000 plants ha−1, the P30F53YH hybrid performs a compensatory effect among assessed yield components in such a way as to not compromise productivity insofar as the plant population increases up to 120,000 plants ha−1. It was noticed, a positive trend of yield components and crop final yield as a function of plant density increments.


2017 ◽  
Vol 52 (11) ◽  
pp. 997-1005 ◽  
Author(s):  
Lucieli Santini Leolato ◽  
Luis Sangoi ◽  
Murilo Miguel Durli ◽  
Fernando Panison ◽  
Ramon Voss

Abstract: The objective of this work was to evaluate the effect of application of the growth regulator Trinexapac-ethyl on maize response to the increase in plant density at two sowing dates. A field experiment was carried out in the municipality of Lages, state of Santa Catarina, Brazil, during the 2014/2015 and 2015/2016 growing seasons. Two sowing dates (10/15 - preferential, and 12/5 - late), four plant densities (5, 7, 9, and 11 plants m-2), with and without Trinexapac-ethyl application, were tested. The growth regulator was sprayed at a rate of 150 g a.i. ha-1, when hybrid P30F53YH was at the V5 and V10 growth stages. The spraying of Trinexapac-ethyl decreased the stem length above the ear insertion node at both growing seasons. Grain yield ranged from 11,422 to 14,805 kg ha-1, and increased in a quadratic way with the increment in plant density. The highest yields were reached when maize was sown in October. The spraying of Trinexapac-ethyl did not affect grain yield, but decreased the 1,000 kernels mass at both sowing dates. The use of Trinexapac-ethyl does not enhance grain yield of maize hybrid P30F53YH at crowded stands in response to the densification, regardless of sowing time.


Sign in / Sign up

Export Citation Format

Share Document