Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979 - 2006

2007 ◽  
Vol 58 (6) ◽  
pp. 567 ◽  
Author(s):  
C. R. Wellings

The wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici; Pst) was first detected in Australia in 1979. The features of the initial pathotype suggested that it was of European origin, and later work provided evidence that it was most likely transmitted as adherent spores on travellers’ clothing. Despite long-held views that this cool temperature pathogen would not adapt to Australian conditions, Pst became endemic and progressively adapted to commercial wheat production through step-wise mutation. Several of these mutant pathotypes became frequent in the Pst population, causing widespread infection and significant costs to production (yield and quality losses; chemical control expenditure) in certain cultivars and seasons. Pathotype evolution, including adaptation to native barley grass (Hordeum spp.) populations, is described. The occurrence of an exotic pathotype of Pst in Western Australia in 2002, and its subsequent spread to eastern Australia, represented a major shift in the pathogen population. This pathotype dominated pathogen populations throughout Australia from 2003, with chemical control expenditure estimated at AU$40–90 million annually. Another exotic introduction was detected in 1998. Initial data indicated that certain isolates collected from barley grass were highly avirulent to wheat differentials, with the exception of partial virulence to Chinese 166. Further seedling tests revealed that these isolates, tentatively designated barley grass stripe rust (BGYR), were virulent on several Australian barleys, notably those of Skiff parentage. Data, including molecular studies, suggest that BGYR is a new forma specialis of P. striiformis. Field nurseries indicate that BGYR is likely to have little impact on commercial barley, although this may change with further pathotype evolution or the release of susceptible cultivars.


2021 ◽  
Author(s):  
Leonardo Miele ◽  
R M L Evans ◽  
Nik Cunniffe ◽  
Daniele Bevacqua

Optimising the use of chemical pesticide is required in order to reduce the inevitable environmental and economic costs related to it. The consequences of chemical control are particularly tricky to foresee in the presence of pathogens, displaying heterogeneous traits involved in their life cycle, because its effect will likely differ across the population. In this work, we investigate the effects of trait-dependent pesticide on heterogeneous plant pathogens, by means of a minimal model connecting evolutionary and agricultural states of the system. We model a pathogen population displaying continuous levels of virulence and transmission. Control strategies are modelled by the quantity of pesticide released and its degree of correlation with the pathogen's heterogeneous traits. We show that the pathogen population can adapt towards opposite evolutionary states, that may be reversed by chemical control due to its heterogeneous selective pressure. This dual behaviour triggers saturating effects in yield production, with respect to pesticide use. As a consequence, we show that maximising yield production and minimising pesticide application are conflicting objectives. We identify Pareto-efficient solutions, where the optimal pesticide type depends on the applied quantity. Our results provide a theoretical framework to explore how to harness heterogeneity in pathogen populations to our advantage.



2021 ◽  
Vol 22 (17) ◽  
pp. 9457
Author(s):  
Qing Bai ◽  
Anmin Wan ◽  
Meinan Wang ◽  
Deven R. See ◽  
Xianming Chen

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. To understand the worldwide distribution of its molecular groups, as well as the diversity, differentiation, and migration of the Pst populations, 567 isolates collected from nine countries (China, Pakistan, Italy, Egypt, Ethiopia, Canada, Mexico, Ecuador, and the U.S.) in 2010–2018 were genotyped using 14 codominant simple sequence repeat markers. A total of 433, including 333 new multi-locus genotypes (MLGs), were identified, which were clustered into ten molecular groups (MGs). The MGs and country-wise populations differed in genetic diversity, heterozygosity, and correlation coefficient between the marker and virulence data. Many isolates from different countries, especially the isolates from Mexico, Ecuador, and the U.S., were found to be identical or closely related MLGs, and some of the MGs were present in all countries, indicating Pst migrations among different countries. The analysis of molecular variance revealed 78% variation among isolates, 12% variation among countries, and 10% variation within countries. Only low levels of differentiation were found by the pairwise comparisons of country populations. Of the 10 MGs, 5 were found to be involved in sexual and/or somatic recombination. Identical and closely related MLGs identified from different countries indicated international migrations. The study provides information on the distributions of various Pst genetic groups in different countries and evidence for the global migrations, which should be useful in understanding the pathogen evolution and in stressing the need for continual monitoring of the disease and pathogen populations at the global scale.



Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Anmin Wan ◽  
Xianming Chen

Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei, the causal agents of stripe rust on wheat and barley, respectively, can change rapidly in virulence, and such changes may overcome resistance in cultivars and result in severe epidemics. To monitor virulence changes in the pathogen populations, isolates obtained from stripe rust samples collected by the authors and collaborators from 17 U.S. states in 2008 and 13 states in 2009 were tested on 20 wheat and 12 barley differential lines to identify races of P. striiformis f. tritici and P. striiformis f. sp. hordei, respectively. In 2008, 33 P. striiformis f. tritici (PST) races were detected, including a new race, PST-138, which was similar to previously identified PST-127 (virulent on wheat differentials 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, and 20) but not virulent on differential 8. The five most frequent races were PST-114 (virulent on differentials 1, 3, 4, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, and 20), PST-100 (virulent on differentials 1, 3, 8, 9, 10, 11, 12, 16, 17, 18, 19, and 20), PST-116 (similar to PST-114 plus virulent on differential 5), PST-101 (similar to PST-100 plus virulent on differential 2), and PST-98 (similar to PST-100 but not virulent on differential 9). In 2009, 26 P. striiformis f. tritici races were identified, including two new races, PST-139 and PST-140. PST-139 was similar to PST-127 but not virulent on differentials 16 and 20. PST-140 was similar to PST-114 but not virulent on differential 9. The five most frequent races were PST-139 (19%), PST-140 (14%), PST-114 (11%), PST-116 (10%), and PST-127 (9%). However, the most widely distributed races were PST-98 (in 10 of the 14 states) and PST-102 (in 7 of the 14 states). Differential genotype AvSYr5NIL (Yr5) was the only one among the 20 differentials that remained resistant to all of the identified races. Virulence diversity of the P. striiformis f. tritici populations was higher west of the Rocky Mountains. For barley stripe rust, P. striiformis f. sp. hordei (PSH)-33 (virulent on barley differentials 1 and 7) was the most common (46%) of the 11 races detected in 2008, including a new race, PSH-82 (virulent only on barley differentials 1 and 11). In 2009, six previously identified races were detected, of which five (PSH-16, PSH-38, PSH-46, PSH-54, and PSH-71) were detected in Washington and two (PSH-54 and PSH-70) in Oregon. The information on P. striiformis f. sp. tritici and P. striiformis f. sp. hordei races should be useful in selecting genes for developing cultivars with effective stripe rust resistance.



2007 ◽  
Vol 58 (6) ◽  
pp. 620 ◽  
Author(s):  
Silvia Germán ◽  
Amarilis Barcellos ◽  
Marcia Chaves ◽  
Mohan Kohli ◽  
Pablo Campos ◽  
...  

Approximately 9 million ha of wheat (Triticum aestivum and T. durum) is sown in the Southern Cone of America (Argentina, Brazil, Chile, Paraguay, and Uruguay). Two rust epidemiological zones separated by the Andean mountain range have been described in the region. Presently, leaf rust (caused by Puccinia triticina) is the most important rust disease of wheat. The utilisation of susceptible or moderately susceptible cultivars in a high proportion of the wheat area allows the pathogen to oversummer across large areas, resulting in early onset of the epidemics. Severe epidemics cause important economic losses if chemical control is not used. The pathogen population is extremely dynamic, leading to transitory resistance in commercial cultivars. Lr34 is commonly present in the regional germplasm, but there is limited knowledge about the presence of other genes conferring resistance in cultivars. Genes Lr28, Lr36, Lr38, Lr41, and Lr43 provide effective resistance in the region. The best strategy for the stabilisation of the pathogen population and resistance is considered to be the use of adult plant resistance conferred by minor additive genes including Lr34 and Lr46. Sources of this type of resistance from CIMMYT and the region have been made available to breeding programs in the Southern Cone. Stripe rust (P. striiformis f. sp. tritici) is endemic in Chile where chemical control is required to prevent severe losses in stripe rust susceptible cultivars. Although new virulent races emerge frequently, resistance genes Yr5, Yr8, Yr10, Yr15, and YrSp are currently effective in Chile. Some important stripe rust epidemics have occurred in Argentina, Brazil, and Uruguay. Avoiding the use of highly susceptible cultivars appears to be an effective strategy to prevent stripe rust epidemic development in this area. There have been no serious stem rust (P. graminis f. sp. tritici) epidemics for over 2 decades; the disease was controlled by resistant cultivars. The most important genes conferring resistance in Southern Cone germplasm at the present time are probably Sr24 and Sr31. Other effective genes are Sr22, Sr25, Sr26, Sr32, Sr33, Sr35, Sr39, and Sr40. Several stem rust susceptible wheat cultivars have recently been released. The increased cultivation of susceptible cultivars may lead to higher stem rust incidence, increasing the probability of appearance of new virulent races. Since the 1BL.1RS translocation possessing Sr31 is present in a high proportion of the regional germplasm, the possible introduction of stem rust with Sr31 virulence from Africa is of great concern.



Plant Disease ◽  
2009 ◽  
Vol 93 (11) ◽  
pp. 1093-1101 ◽  
Author(s):  
W. Q. Chen ◽  
L. R. Wu ◽  
T. G. Liu ◽  
S. C. Xu ◽  
S. L. Jin ◽  
...  

Stripe (or yellow) rust caused by Puccinia striiformis f. sp. tritici is the most destructive foliar disease of wheat in China. The pathogen populations were analyzed for virulence evolution, complexity, phenotypic dynamics, and diversity on temporal and spatial bases. A total of 41 races were identified and characterized from 4,714 stripe rust isolates collected during 2003 through 2007 from wheat growing areas in 15 provinces in China. The races were based on avirulence/virulence patterns to 19 differential host genotypes. Chinese stripe rust population exhibited high diversity with a complex virulence structure. Comparisons using the relative Shannon's index indicated that some differences in the richness and evenness of races were present in pathogen populations within years and between regions despite a national tendency to reduced diversity over time. A noticeably increased frequency of race CYR33 (Chinese yellow rust 33) with virulence for YrSu was the major virulence change recorded in this study compared to the results on an annual basis. Isolates of Puccinia striiformis f. sp. tritici from different regions showed differences in the composition of races, distribution frequency, and diversity. The uneven distribution of major races and comparatively greater diversity in the Northwest and Southwest regions than that in the Huang-Huai-Hai region suggest that long-distance migrations of the pathogen occur from one or more over-summering areas eastward into over-wintering areas. This supports the hypothesis that southern Gansu and northwestern Sichuan comprises a “center of origin for virulence”. Mutation of virulence or avirulence for host resistance in the stripe rust fungus may be the basic cause of the occurrence of new virulent types. The subsequent dominance of certain races will vary with parasitic fitness and the opportunities to be selected through large-scale cultivation of varieties with matching resistance genes. Implications of the center of origin for virulence variation and diversity in the pathogen population and an alternative strategy for limiting virulence evolution are discussed.





1980 ◽  
Vol 112 (3) ◽  
pp. 306-310 ◽  
Author(s):  
R. K. Stewart ◽  
A. R. Khattat

AbstractCaged microplots of “Contender” green beans, Phaseolus vulgaris L., were artificially infested with various densities of Lygus lineolaris (Palisot de Beauvois) to determine the effect of feeding on yield and quality, and to establish economic injury levels. Plants infested at bloom or pod set stage were more severely injured than those infested at the flower bud stage. Higher infestation levels reduced crop yield, but the percentage of crude protein in bean seeds was not affected. Based on 1975 crop values and chemical control costs, economic injury levels ranged between 0.3 and 4.4 insects/10 plants depending on crop use, chemical control, and plant stage infested.





2016 ◽  
Vol 106 (4) ◽  
pp. 362-371 ◽  
Author(s):  
P. Cheng ◽  
X. M. Chen ◽  
D. R. See

Puccinia striiformis causes stripe rust on cereal crops and many grass species. However, it is not clear whether the stripe rust populations on grasses are able to infect cereal crops and how closely they are related to each other. In this study, 103 isolates collected from wheat, barley, triticale, rye, and grasses in the United States were characterized by virulence tests and simple sequence repeat (SSR) markers. Of 69 pathotypes identified, 41 were virulent on some differentials of wheat only, 10 were virulent on some differentials of barley only, and 18 were virulent on some differentials of both wheat and barley. These pathotypes were clustered into three groups: group one containing isolates from wheat, triticale, rye, and grasses; group two isolates were from barley and grasses; and group three isolates were from grasses and wheat. SSR markers identified 44 multilocus genotypes (MLGs) and clustered them into three major molecular groups (MG) with MLGs in MG3 further classified into three subgroups. Isolates from cereal crops were present in one or more of the major or subgroups, but not all, whereas grass isolates were present in all of the major and subgroups. The results indicate that grasses harbor more diverse isolates of P. striiformis than the cereals.



2015 ◽  
Vol 66 (4) ◽  
pp. 308 ◽  
Author(s):  
Alison. J. Frischke ◽  
James R. Hunt ◽  
Dannielle K. McMillan ◽  
Claire J. Browne

In the Mallee region of north-western Victoria, Australia, there is very little grazing of crops that are intended for grain production. The success of dual-purpose crops in other regions in south-eastern Australia with higher and more evenly distributed rainfall has driven interest in assessing the performance of dual-purpose cereals in the region. Five experiments were established in five consecutive years (2009–13) in the southern Mallee to measure the forage production and grain yield and quality response in wheat and barley to grazing by sheep or mechanical defoliation. The first three experiments focused on spring cultivars sown from late April to June, and the last two on winter cultivars planted from late February to early March. Cereal crops provided early and nutritious feed for livestock, with earlier sowing increasing the amount of dry matter available for winter grazing, and barley consistently produced more dry matter at the time of grazing or defoliation than wheat. However, the grain-production response of cereals to grazing or defoliation was variable and unpredictable. Effects on yield varied from –0.7 to +0.6 t/ha, with most site × year × cultivar combinations neutral (23) or negative (14), and few positive (2). Changes in grain protein were generally consistent with yield dilution effects. Defoliation increased the percentage of screenings (grains passing a 2-mm sieve) in three of five experiments. Given the risk of reduced grain yield and quality found in this study, and the importance of grain income in determining farm profitability in the region, it is unlikely that dual-purpose use of current cereal cultivars will become widespread under existing grazing management guidelines for dual-purpose crops (i.e. that cereal crops can be safely grazed once anchored, until Zadoks growth stage Z30, without grain yield penalty). It was demonstrated that early-sown winter wheat cultivars could produce more dry matter for grazing (0.4–0.5 t/ha) than later sown spring wheat and barley cultivars popular in the region (0.03–0.21 t/ha), and development of regionally adapted winter cultivars may facilitate adoption of dual-purpose cereals on mixed farms.



Sign in / Sign up

Export Citation Format

Share Document