Organic amendments influence nutrient availability and cotton productivity in irrigated Vertosols

2008 ◽  
Vol 59 (11) ◽  
pp. 1068 ◽  
Author(s):  
Subhadip Ghosh ◽  
Nilantha Hulugalle ◽  
Peter Lockwood ◽  
Kathleen King ◽  
Paul Kristiansen ◽  
...  

There is increasing interest in the use of organic amendments in the Australian cotton (Gossypium hirsutum L.) industry because of perceived benefits to soil health and the environment. A 2-year field experiment was conducted at the Australian Cotton Research Institute (ACRI), near Narrabri, NSW, using three locally available organic amendments applied at typical farmers’ rates to irrigated cotton. The amendments used were cattle manure (10 t/ha), composted cotton gin trash (7.5 t/ha), and a commercial liquefied vermicompost (50 L/ha), and their effects on soil quality characteristics were compared with those of control soil where no amendment was added. The soil (0–0.10 m) was sampled on six occasions and analysed for selected chemical and microbiological properties. The physiological characteristics and nutrient uptake of mature cotton plants were also examined. The organic amendments did not have a significant effect on microbiological properties as measured by microbial biomass and respiration. Of the chemical properties measured, manure-amended plots showed higher nitrate-nitrogen, available phosphorus, and exchangeable potassium (K) concentrations over 2 years. Exchangeable K was 28% higher where cattle manure was applied than in control plots during the active growth stage of cotton in the first year of experiment. Higher nutrient uptake by mature cotton plants and lower nutrient concentration in soil were observed in the second year. Cotton physiological properties and lint yield were not significantly affected by the application of organic amendments. Seasonal parameters had a strong effect. The results suggest that there are few short-term benefits to be gained in terms of soil quality from application of organic amendments to Vertosols at the rates used in these trials.

2018 ◽  
Vol 44 (2) ◽  
pp. 675
Author(s):  
P. Hueso-González ◽  
J.M. Martínez-Murillo ◽  
J.D. Ruiz-Sinoga

Restoring the native vegetation is one of the most effective way to regenerate forest soil health. The seeding and plant establishment stages are critical; but during these stages the beneficial effects of the vegetation may not be apparent, and the soil is highly susceptible to erosion and depletion of soil quality. In the initial months after afforestation, vegetation cover establishment and soil quality could be better sustained if the soil was amended with an external extra source of organic matter. The objective of this study is to analyze the benefits of using different organic amendments on some soil properties. The soil treatment selected were: (i) afforestation with straw mulching treatment; (ii) afforestation with mulch with chipped branches of Aleppo Pine (Pinus halepensis Mill.); (iii) afforestation with cattle manure compost; (iv) sewage sludge and; (v) afforestation in unamended soils, control condition. The amendments were applied at the rate of 10 Mg ha-1. Six years after the amendment application, only the addition of straw and pine mulch have shown a significant increase in soil organic carbon regarding the afforestation under bare soil conditions. Besides, this increase was also directly related with the increase in microbiological activity and aggregate stability. On the other hand, the addition of sewage sludge or cattle manure is not an effective treatment to favor the edaphic structure regarding the afforestation under unamended soils.


Author(s):  
H. Haruna

Land use changes from forest into cultivated ecosystems result in negative impact on soil structure and quality. The purpose of this study was to determine effect of land use on soil quality in Afaka forest northern guinea savannah of Nigeria. Land use systems, including natural forest and cultivated land were identified. Eighteen (18) composite disturbed and undisturbed samples were collected from depth of 0-5 and 5-10 cm for analysis of pertinent soil properties in the laboratory using grid procedure. Most physical and chemical properties show relative variations in response to land use types and geomorphic positions. Results  indicate  that the soils had  high degree of weathering potentials, low  to moderate  bulk density at 0-5cm depth values between 1.42 to 1.49 Mg m-3 in  forest and  cultivated land, bulk density of  1.34 and 1.46 1.Mg m-3at 5 -1ocm depth   for forest and  cultivated land respectively. The soil water at 0-5cm depth is from 4.20 to 2.63 cm3/cm3, while at 5-10 cm depth these values vary from 4.32 to 2.13 cm3/cm3 under forest and cultivation land use. The pH (H2O) is 6.9 to 7.16 with low electrical conductivity of 0.13 dS/m(forest) and 0.12 dS/m (cultivation). The CEC of soils is recorded as 8.60 cmol kg-1 (forest) to 8.54 cmol kg-1 (cultivated)whereas  total nitrogen content of 1.21 g kg-1 and 1.11 g kg-1 and available phosphorus of 8.78 mg kg-1 (cultivated) and 5.47 mg kg-1 (forest).. Results indicate that soil fertility parameters were moderate to low for cultivated land and at all slope positions, suggesting that soil fertility management is required in order to make agriculture sustainable on Afaka area.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-26
Author(s):  
NTANGMO TSAFACK Honorine ◽  

Soil fertility indices are well documented as they are directly related to land use and productivity. However, the effect of continuous intensive cultivation on the evolution of soil fertility is still poorly documented. The aim of this study was thus to assess the effect of continuous intensive cultivation on the chemical and microbiological properties of Oxic Dystrandept soils in the Western Highlands of Cameroon. Composite soil samples were taken between 0-15 cm depths on farmlands that have been subjected to continuous intensive cultivation for one, five and ten years meanwhile samples from plots that have never been cultivated served as control. The main results revealed that the ammonium contents dropped abruptly (86%-wt) from the first year of cultivation. The organic carbon (OC) content decreased from 1.81 ± 0.14 %-dm (in control) to 1.69 ± 0.09 % after one year, 1.66 ± 0.10 % after 5 years and 1.58 ± 0.07 % after 10 years. Compared to the control, available phosphorus (P) showed a 13 %-wt drop after one year, 46 % after 5 years and 85 % after 10 years. Dehydrogenase activity showed a 42 % decrease after one year, 50 % after five years and 73 % after 10 years. The other parameters were not significantly different (P<0.05) amongst treatments. Decline of soil productivity was undoubtedly related to the decrease of OC, P, microbial activity and ammonium with continuous intensive cultivation. Thus, management strategies for improved crop production should include selection suitable cropping systems and chemical methods. Keywords: Continuous intensive cultivation, enzymatic activities, soil chemical properties, Oxic Dystrandept, Cameroon western highland


2020 ◽  
pp. 1-9

A field experiment was conducted at Rubber Research Institute of Nigeria, Edo state Iyanomo during the 2014 wet season to determine the comparative effects of sole and combined application of organic and inorganic fertilizer on soil, and Rubber seedling performance and the experiment consisted of six treatments. The treatments were laid in a Randomized Complete Block Design (RCBD) with three replications. The materials used were one strain of mycorrhizal (GC) applied at the rate of 5000kg/ha, NPK 15:15:15 at the rate of 112 kg/ha and poultry manure was also applied at the rate of 6000 kg/ha. Plant data; height, girth, leaf area and number of leaves were collected at monthly interval for seven (7) months. Soil samplings were obtained before, three months and seven months after application of soil treatment from 0-15cm depth and were subjected to laboratory analysis (chemical analysis). All data sets were subjected to analysis of variance (ANOVA) using Genstat (2008) statistical package. The significant means were separated using Duncan Multiple Range Test (DMRT) at 5% level of probability. Also the plant analysis was carried out at the end of the trial to determine the nutrient content which was used to calculate the nutrient uptake. The result show general increase in the chemical properties after application of treatments in organic matter, nitrogen, pH, calcium, potassium, Available phosphorus, ECEC and base saturation with values 6.74, 0.49, 6.53, 4.50, 1.50, 8.62, 10.68 and 99.85 respectively. Higher growth in plant height, (140.3, 133.0 cm) girth, (11.9, 10.5, respectively, were obtained after seven months of planting in the cropping seasons. The result of the nutrient uptake obtained showed that at 7 months after application of treatment. There was a general increase in the chemical properties of the soil through the addition of the different soil amendments (organic and inorganic fertilizer).


Soil Systems ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 57 ◽  
Author(s):  
Sudarshan Kharal ◽  
Babu Khanal ◽  
Dinesh Panday

Unscientific land use and cropping techniques have led high soil erosion and degradation of soil quality in the mid-hills of Nepal. To understand the effects of land use systems for selected soil chemical properties in mid-hills, composite soil samples at 0 cm to 20 cm depth were collected from five different land-use systems: Grassland, forest land, upland, lowland, and vegetable farms from Dhading district of Nepal in 2017. Soil samples were analyzed for soil fertility parameters: Soil pH, organic matter (OM), total nitrogen (N), available phosphorus (P), available potassium (K) and its effect due to different land use systems were compared. Results showed that soil pH was neutral in vegetable farms (6.61), whereas the rest of the land-use systems had acidic soils. Soil OM (3.55%) and N (0.18%) content was significantly higher in forest, but the lowest soil OM (1.26%) and N (0.06%) contents were recorded from upland and lowland farms, respectively. Available P was the highest in the vegetable farm (41.07 mg kg−1) and was the lowest in grazing land (2.89 mg kg−1). The upland farm had significantly higher P levels (39.89 mg kg−1) than the lowland farm (9.02 mg kg−1). Available K was the highest in the vegetable farm (130.2 mg kg−1) and lowest in grazing land (36.8 mg kg−1). These results indicated that the land under traditional mixed cereal-based farming had poor soil health compared with adjacent vegetable, grazing, and forest lands among the study area. The variations in soil fertility parameters suggest the immediate need for improvement in soil health of traditional farmlands.


2015 ◽  
Vol 3 (1) ◽  
pp. 80-84
Author(s):  
Dushyant Pandey ◽  
Shrikant Chitale ◽  
D Thakur

Field Study on Nutrient uptake and Physico – chemical properties of soil influenced by organic and inorganic packages in rice was carried out at Research Cum Instructional Farm IGKV., Raipur (C.G.) during kharif 2010 and 2011. The soil of experimental field was ‘Inceptisols’ (Matasi), which was low in nitrogen, medium in available phosphorus and potassium. The experiment was laid out in randomized block design with three replication. The treatments consisted of Basmati type rice variety viz. Kasturi Comprising organic, inorganic and integrated nutrient management. Treatment T1 (50% RDF + 50% N (CDM), T2 (100% N((1/3 rd each CDM +NC+CCR) T3 (100% N (1/3 rd each CDM + NC + CCR) + Green manure in rice), T4 100% N (1/3 rd each CDM + NC + CCR) +Deep summer ploughing), T5 (50% N(CDM)+RP+PSB+Azos.), T6 (100%N(1/3 rd each CDM+NC+CCR) + Azos.+ PSB) and T7 (100% RDF).among different nutrient management practiceshigher nutrient uptake in grain and straw were observed under treatment T7(100% RDF).followed by T1 (50% RDF + 50% N (CDM) an INM treatment.whereas water uptake was exceeding in100% N applied through 1/3 rd each CDM + NC + CCR + Green manure in rice. Bulk density, pH and EC were also exceeds in T7, except T6 (100% N CDM + NC + CCR + Azos + PSB) which has higher OC.


2019 ◽  
Vol 10 (2) ◽  
pp. 32-37
Author(s):  
Farida Begum ◽  
Muneer Alam ◽  
Sameena Mumtaz ◽  
Manzoor Ali ◽  
Seema Wafee ◽  
...  

Soil quality is a fundamental component of environmental quality and impact of land use is also a keydetrimental factor in today’s rapid urbanization era. The study aims to evaluate the effects of different land-use type on selected soil quality indicators. Sixty soil samples were collected from various land use types, i.e, pasture, forest and agriculture from a depth of 0-15cm. Analysis of variance (ANOVA) showed that the land use type significantly affected the soil’s physical and chemical properties. The moisture content was significantly higher (p<0.001) in the pasture (41.7%) than the forest (26.2%) and lowest in agricultural land (14.4%). The soil pH was significantly higher or slightly alkaline for agriculture (7.8), while for pasture (6.5) and forest (6.1), it was found to be slightly acidic. Electric conductivity (EC) and bulk density (BD) did not vary significantly with land use type, but the EC followed the decreasing order: forest (203.7μS/cm) < pasture (235μS/cm) < agriculture (328.7μS/cm). The soil organic matter (SOM) and soil organic carbon (SOC) significantly (p<0.05) differed with land use type and found in the order: forest (3.0%, 1.3 %) > pasture land (2.9%, 1.2%) > arable land (2.5%, 1.1%). NO3-N, available P and exchangeable K did not vary significantly across land use types. However, mean values were higher for agriculture (10.2mg/kg, 4.5mg/kg, 66mg/kg) than forest (10mg/kg,3.5mg/kg, 60mg/kg) and pasture (9.8mg/kg, 4.3, 60.2mg/kg). Alpine soils are good ecological indicators because of vulnerability to environmental change, therefore, regular monitoring of soil properties along with carbon stocks is essential to maintain soil health, enhance agricultural productivity and sustain agroecosystems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Irfan ◽  
Muhammad Mudassir ◽  
Muhammad Jamal Khan ◽  
Khadim Muhammad Dawar ◽  
Dost Muhammad ◽  
...  

AbstractSoil with heavy metals contamination, mainly lead (Pb), cadmium (Cd), and chromium (Cr) is a progressively worldwide alarming environmental problem. Recently, biochar has been used as a soil amendment to remediate contaminated soils, but little work has been done to compare with other organic amendments like compost. We investigated biochar and compost's comparative effect on Pb, Cd, and Cr immobilization in soil, photosynthesis, and growth of maize plants. Ten kg soil was placed in pots and were spiked with Pb, Cd, and Cr at concentrations 20, 10, 20 mg kg−1. The biochar and compost treatments included 0, 0.5, 1, 2, and 4% were separately applied to the soil. The crop from pots was harvested after 60 days. The results show that the highest reduction of AB-DTPA extractable Pb, Cd, and Cr in soil was 79%, 61% and 78% with 4% biochar, followed by 61%, 43% and 60% with 4% compost compared to the control, respectively. Similarly, the highest reduction in shoot Pb, Cd, and Cr concentration was 71%, 63% and 78%with 4% biochar, followed by 50%, 50% and 71% with 4% compost than the control, respectively. The maximum increase in shoot and dry root weight, total chlorophyll contents, and gas exchange characteristics were recorded with 4% biochar, followed by 4% compost than the control. The maximum increase in soil organic matter and total nitrogen (N) was recorded at 4% biochar application while available phosphorus and potassium in the soil at 4% compost application. It is concluded that both biochar and compost decreased heavy metals availability in the soil, reducing toxicity in the plant. However, biochar was most effective in reducing heavy metals content in soil and plant compared to compost. In the future, more low-cost, eco-friendly soil remediation methods should be developed for better soil health and plant productivity.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Huck Ywih Ch’ng ◽  
Osumanu Haruna Ahmed ◽  
Nik Muhamad Ab. Majid

In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.


2020 ◽  
Vol 12 (23) ◽  
pp. 10078
Author(s):  
Sang Hwan Lee ◽  
Jung Hyun Lee ◽  
Woo Chul Jung ◽  
Misun Park ◽  
Min Suk Kim ◽  
...  

For sustainable soil management, there is an increasing demand for soil quality, resilience, and health assessment. After remediation of petroleum hydrocarbon (PHC)-contaminated soils, changes in the physicochemical and ecological characteristics of the soil were investigated. Two kinds of remediation technologies were applied to contaminated soils: land farming (LF) and high temperature thermal desorption (HTTD). As a result of total petroleum hydrocarbons (TPH), PHC-contaminated soils were efficiently remediated by LF and HTTD. The soil health could not be completely recovered after the removal of pollutants due to adverse changes in the soil properties, especially in soil enzyme activities. Therefore, monitoring is necessary for accurate estimation of soil ecotoxicity and effective remediation, and additional soil management, such as fertilizer application or organic amendments, is needed to restore soil heath. In the case of HTTD, soil ecological properties are severely changed during the remediation process. The decision to reuse or recycle remediated soils should reflect changes in soil quality. HTTD is a harsh remediation method that results in deterioration of soil fertility and ecological functions. Alternatives, such as low-temperature thermal desorption or additional soil management using fertilizer or organic amendments, for example, are needed.


Sign in / Sign up

Export Citation Format

Share Document