Photosynthesis of wheat under field conditions. III. Seasonal trends in carbon dioxide uptake of crop communities

1971 ◽  
Vol 22 (1) ◽  
pp. 1 ◽  
Author(s):  
DW Puckridge

Photosynthesis of two wheat cultivars grown in the field was examined during three seasons by use of a portable field assimilation chamber. There were large differences in dry weight, leaf area, and carbon dioxide uptake between seasons. Variations in carbon dioxide uptake by the community were related mainly to changes in leaf area index (LAI). There were changes in carbon dioxide uptake per unit LAI with time, and between the two cultivars in the first season, but the effects of these changes were small compared with the effects of LAI. Differences in grain yield were correlated with LAI and carbon dioxide uptake in the period after anthesis.

1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


1971 ◽  
Vol 22 (1) ◽  
pp. 11 ◽  
Author(s):  
DW Puckridge ◽  
DA Ratkowsky

The photosynthesis of two cultivars of wheat at three densities of sowing was measured during the growing season of 1968. When the data were plotted as carbon dioxide uptake versus leaf area index (LAI) (leaf laminae and green stem) for a fixed value of solar radiation, it was found that all of the data could be fitted by a single curve, irrespective of variety, sowing density, or time of season when the measurements were made. Since the curve was of continuously decreasing slope, the carbon dioxide uptake per unit LAI was highest for the low values of LAI and was reduced with the increased light interception at high LAI. For a solar radiation of 0.6 cal/cm2/min the approximate maximum net photosynthesis was 4.5 g CO2/m2/hr for an LAI of 6. A mathematical model for photosynthesis was found to give good prediction of carbon dioxide uptake versus solar radiation for most of the period of measurement. For each plot, a rectangular hyperbola was fitted to the data. When the parameters of the model were subsequently plotted as a function of LAI, then within a given variety, it was found that lines of common slope but differing intercepts could be drawn through the points for different sowing densities. From these fitted lines together with the measured values of LAI and respiration, carbon dioxide uptake was then predicted as a function of solar radiation by employing the rectangular hyperbola model. Good agreement between predicted and measured values of photosynthesis was obtained.


1985 ◽  
Vol 104 (2) ◽  
pp. 413-419 ◽  
Author(s):  
J. M. Ramos ◽  
L. F. Garcia del Moral ◽  
L. Recalde

SummaryThe object of this study was to investigate the vegetative growth in six barley varieties grown in southern Spain (Granada) during 1979, 1980 and 1981. The results showed that crop dry weight (CDW) was dependent on environmental factors (mean temperature, rain, and radiation) which were the determinants of the two CDW components, leaf area index (LAI) and leaf area ratio (LAR). However, the effects of these climatic factors on crop growth rate (CGR) and on its components, mean leaf area index () and net assimilation rate (NAR), were partially obscured by ontogenetic drift. In addition, a highly significant relationship was demonstrated between CDW (when the LAI reaches its maximum value) and grain yield. This suggests that the pre-anthesis period has a great influence in the determination of grain yield variation in hot, dry areas, where photosynthesis is very limited after ear emergence.


2021 ◽  
Vol 54 (3) ◽  
pp. 231-243
Author(s):  
Chao Liu ◽  
Zhenghua Hu ◽  
Rui Kong ◽  
Lingfei Yu ◽  
Yuanyuan Wang ◽  
...  

1982 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
S. U. Remison ◽  
E. O. Lucas

SUMMARYTwo maize cvs, FARZ 23 and FARZ 25, were grown at three densities (37,000, 53,000 and 80,000 plants/ha) in 1979 and 1980. Leaf area index (LAI) increased with increase in plant population and was at a maximum at mid-silk. Grain yield was highest at 53,000 plants/ha. There was no relation between LAI and grain yield but there was a positive correlation between LAI and total dry matter yield.


1958 ◽  
Vol 51 (3) ◽  
pp. 347-352 ◽  
Author(s):  
R. H. M. Langer

1. Swards of S. 48 timothy and S. 215 meadow fescue growing alone or together were sampled at intervals of 3 weeks throughout the season. The number and weight of leaves, stems and ears were determined, and leaf area was estimated.2. Despite high rainfall, the total number of tillers in both species declined from the beginning of the experiment until early July, but increased again from then onwards until the original complement had been approximately restored. The number of leaves failed to show a corresponding increase in the autumn because each tiller carried fewer leaves than earlier in the year.3. In the spring total dry weight increased more rapidly in meadow fescue than in timothy which in turn out-yielded meadow fescue later in the season. Both species attained their greatest dry weight soon after ear emergence, a period which was marked by considerable crop growth and relative growth rates.4. Leaf area index reached a maximum before total dry weight had increased to its highest level, but then declined in both species. Meadow fescue differed from timothy by producing a second crop of foliage after the summer with a leaf area index of about 7. This second rise appeared to be due mainly to increased leaf size in contrast to timothy whose leaves became progressively smaller towards the end of the season.5. The differences in growth between the species discussed with reference to their dates of ear emergence which in this experiment differed by about 6 weeks.


2021 ◽  
Vol 30 (2) ◽  
pp. 159-168
Author(s):  
Shabnur Chowdhury ◽  
MK Rahman

Effects of organic manures on growth and yield of lettuce (Lactuca sativa L.) and nutrient accumulation in its leaves was examined. The experiment was conducted in a completely randomized design (CRD) replicated thrice with ten treatments involving nine organic manures and a control treatment. Growth parameters viz. plant height, leaf number, leaf length, leaf area, leaf area index and fresh and dry weight of leaf, stem and root were assessed. The highest height (23.69 cm), longest leaf (32.18cm), leaf area (5883.43cm2), leaf area index (6.434), fresh weight (85.41 g) and dry weight (42.73 g) were found in Payel organic manure. The maximum leaf number (27) was recorded in Approshika organic manure. The maximum content of nitrogen (6.12%), phosphorus (1.83%), potassium (4.11%) and Sulphur (1.69%) were observed in Payel organic manure. The best growth performance and nutrient accumulation was observed in Payel organic manure. Dhaka Univ. J. Biol. Sci. 30(2): 159-168, 2021 (July)


2004 ◽  
Vol 142 (2) ◽  
pp. 183-191 ◽  
Author(s):  
M. GHOSH ◽  
B. K. MANDAL ◽  
B. B. MANDAL ◽  
S. B. LODH ◽  
A. K. DASH

Growth environment and plant nutrition are two important factors influencing growth, yield and quality of aromatic rice (Oryza sativa L.). The present study was conducted at Kalyani, India to determine the effect of two planting dates and four fertilizer levels on different aromatic rice cultivars during the dry seasons of 1995/96 and 1996/97, while nine cultivars were evaluated during the wet seasons of 1996 and 1997. Thermal and photoperiodic conditions significantly influenced the vegetative (leaf area index and light extinction co-efficient) and reproductive (filled spikelets/panicle) growth of the crop. Delayed planting (23 February) significantly reduced the grain yield by 0·88 t/ha, amylose content by 0·5% and duration by 10 days; but increased the summed heliothermal units (17806 v. 18505). Thus, the cultivars became less efficient (27%) in heat use with delay in planting from 2 to 23 February. Relative availability of NH4+-N from urea and Azolla influenced the crop growth (leaf area index [LAI], tiller production and leaf chlorophyll content) and nutrient uptake. Supply of inorganic N either alone or in conjunction with Azolla significantly increased grain yield (18–41%) and protein content (0·1–0·7%) over 15 t/ha of Azolla alone. However, combined application of Azolla and urea lowered the amylose content below that achieved by application of either substance alone. Correlation studies among quality attributes indicated that long-grained varieties had lower head rice recovery (r=−0·69) due to more breakage during milling and greater test weight (r=0·93).


Author(s):  
Ionuṭ RACZ ◽  
Rozalia KADAR ◽  
Sorin VȂTCĂ ◽  
Ioana Virginia BERINDEAN ◽  
Adrian CECLAN ◽  
...  

The objective of this study was to investigate relationships between leaf area index, leaf chlorophyll concentration, yield components and grain yield in oat (Avena sativa L.). Ten oat varieties were analyzed in field conditions regarding those traits. Flag leaf chlorophyll concentration range between 451.51 and 747.79 units of μmol of chlorophyll per m2. Also, leaf area index range between 13.68 to 32.84 cm2. Significant correlation indices were highlighted between yield components and leaf area index, yield/yield components and chlorophyll concentration of flag leaf.


2020 ◽  
Vol 15 (1) ◽  
pp. 106-122
Author(s):  
J. Alam ◽  
R. K. Panda

 Any change in climate will have implications for climate-sensitive systems such as agriculture, forestry and some other natural resources. Changes in solar radiation, temperature and precipitation will produce changes in crop yields and hence economics of agriculture. It is possible to understand the phenomenon of climate change on crop production and to develop adaptation strategies for sustainability in food production, using a suitable crop simulation model. CERES-Maize model of DSSAT v4.0 was used to simulate the maize yield of the region under climate change scenarios using the historical weather data at Kharagpur (1977-2007), Damdam (1974-2003) and Purulia (1986-2000), West Bengal, India. The model was calibrated using the crop experimental data, climate data and soil data for two years (1996-1997) and was validated by using the data of the year 1998 at Kharagpur. The change in values of weather parameters due to climate change and its effects on the maize crop growth and yield was studied. It was observed that increase in mean temperature and leaf area index have negative impacts on maize yield. When the maximum leaf area index increased, the grain yield was found to be decreased. Increase in CO2 concentration with each degree incremental temperature decreased the grain yield but increase in CO2 concentration with fixed temperature increased the maize yield. Adjustments were made in the date of sowing to investigate suitable option for adaptation under the future climate change scenarios. Highest yield was obtained when the sowing date was advanced by a week at Kharagpur and Damdam whereas for Purulia, the experimental date of sowing was found to be beneficial.


Sign in / Sign up

Export Citation Format

Share Document