scholarly journals Genotype and environment effects on feed grain quality

1999 ◽  
Vol 50 (5) ◽  
pp. 703 ◽  
Author(s):  
L. O'Brien

The extent of genotype and location effects on chemical composition and nutritive value of grains fed to animals was surveyed. The review covered the winter cereals (wheat, barley, oats, and triticale), the summer cereals (sorghum and maize), and the pulses (field pea, lupins, faba beans, and chickpea) when fed to cattle, sheep, poultry, pigs, rats, and mice. The bulk of the literature does not meet the statistical criteria required to differentiate genotype and environment effects. When the criteria were satisfied, significant genotype differences were shown to exist for chemical composition in wheat, barley, triticale, and sorghum, for nutritive value as determined by methods in vitro in wheat, barley, oats, triticale, and sorghum, and in vivo for wheat, barley, triticale, sorghum, and maize. Valid comparisons across grain species are few, but in vitro gas production ranks wheat > oats > barley. Significant location, year, genotype × location, genotype × year, and genotype × location × year effects were reported for nutritive value for some grains. Wheat feeding trials with poultry indicate that environment can affect apparent metabolisable energy (AME) as much as, if not more than, genotype. A greater range in nutritive value appears to exist in barley than in wheat. The information is unclear in the case of triticale, where despite some reports claiming that grain of this species has high lysine content, the difference does not appear to translate to improved performance in animals. Insufficient studies exist for oats despite it being one of the most widely used on-farm feed grains. No examples could be found of studies with rye. The most thoroughly researched grain has been sorghum, which is principally grown in developed countries for feeding to livestock. Here, some definitive studies have been conducted to define the extent of genotype, location, and genotype × environment interaction effects. Scope exists to enhance the nutritive value of sorghum by breeding through modification of endosperm composition, tannin content, and improved protein digestibility. Variation in endosperm composition in maize due to simply inherited mutations provides the opportunity to improve its nutritive value. This review indicates that before any plant breeding is undertaken for feed grain quality, a better understanding of what determines nutritive value and the relative importance of genotype and environment in modulating these factors is required.

Author(s):  
A. Aïssa ◽  
C. Ben Mustapha ◽  
M.R. Alvir ◽  
M. Hadj Ayed ◽  
I.E.A. Znaïdi ◽  
...  

Background: Many in vivo and laboratory methods have been used to evaluate ruminant feeds. The objective of this experiment was to determine feed intake, digestibility, kinetics of gas production, in vitro organic matter digestibility (OMDv) and metabolizable energy (ME) of Trifolium alexandrinum (T. alexandrinum) and Medicago sativa (M. sativa) at different maturity stages through in vivo and in vitro methods to elaborate predictive equations from chemical constituents. Methods: In vivo assay was carried out with two groups of five rams male kipped in metabolism cage. Samples of forage, refusal and feces were collected and processed for chemical analysis. In vitro gaz production technique was performed on forage samples.Result: The bud and early bloom stage of M. sativa recorded the highest digestibility values of the chemical component (P less than 0.05). The OMDv of M. sativa was 60.65 and 68.26% (P less than 0.01) for early bloom stage and bud stage, respectively. Crude protein digestibility (CPD) was positively correlated with crude protein rate (R2=0.83, P less than 0.05). The gas production from the insoluble fraction “b” fraction showed a positive correlation with acid detergent fiber (ADF) (R2=0.999, P less than 0.001). However, cumulative gas production at 24h and 48 h of incubation were negatively correlated (P less than 0.05) with the ADF rate (R2= -0.98 and -0.97, respectively). 


2007 ◽  
Vol 2007 ◽  
pp. 233-233 ◽  
Author(s):  
Armin Towhidi ◽  
Farnoush Rostami ◽  
Reza Masoumi

In Iran, Javan (2001) has reported the digestibility some arid rangelands plants by bovine rumen liquor. The determination of in vivo digestibility of wheat straw implies that camel apparently digested poor quality roughages more than cattle and sheep (Cianci et al., 2004). Therefore, It is required to measure the in vitro digestibility of herbages by camel rumen liquor. In province of yazd, nutritive value of 11 different plant species for camel were determined (Towhidi, 2007). The objectives of the current study were to determine 1) the chemical composition, gross energy of the most consuming plant species from rangeland of Semnan province including Seidlitzia rosmarinu, Tamarix tetragyna, Tamarix strica, Halostachys spp, Saudea fruticosa., Alhagi camelorum, Haloxylon ammondendron., Salsola arbescola, Hammada salicornica and, 2) in vitro digestibility of the plants by camel rumen liquor.


1998 ◽  
Vol 22 ◽  
pp. 202-204
Author(s):  
C. D. Wood ◽  
N. S. Prathalingam ◽  
A. M. Murray ◽  
R. W. Matthewman

A major focus for improving the diets in many less developed countries (LDCS) is the provision of rumen fermentable nitrogen (N) using protein supplements to complement N-deficient foods. However, in vitro digestibility methods usually use N-rich environments for the degradation of single foods. This conventional approach may give data which do not reflect the nutritive value of the N-deficient diets often on offer in LDCS, neither is it appropriate for using in vitro gas production to study protein supplementation. Our earlier study indicated that, by using a N-free medium, the gas production technique responded to added ammonium sulphate and urea. The ADAS standardized methodology, which used 10 ml of inoculum instead of the 5 ml used in the earlier study, was found not to be very responsive to N supplementation. The ADAS methodology was therefore investigated in order to develop a modified protocol for fermenting foods in an N-limited environment. The study involved using inocula diluted to different extents in N-free medium for fermenting N-deficient substrates in N-free and N-rich media. The modified protocol was then used for investigating the interactions between N-rich and N-deficient foods from north-west India.


2018 ◽  
Vol 13 (1) ◽  
pp. 269-278 ◽  
Author(s):  
Mustafa Olfaz ◽  
Unal Kilic ◽  
Mustafa Boga ◽  
Abdiwali Mohamoud Abdi

AbstractThis study was conducted to determine the potential nutritive value andin vitrogas production (IVGP) parameters ofOlea europaea L. (Olive = OL),Morus alba L. (Mulberry = ML) andCitrus aurantium L. (Sour orange = SOL) tree leaves. Hohenheim gas test was used to determine thein vitrogas productions of the leaves. The gas production of samples over time was recorded for 3, 6, 9, 12, 24, 48, 72 and 96 h after incubation. Completely Randomized Design was used to compare gas production, and gas production kinetics of samples. The findings of the present study suggested that there were differences among the tree leaves in terms of crude protein, NDF,in vitrogas productions, organic matter digestibility (OMD), metabolisable energy (ME), net energy lactation (NEL) and relative feed values (RFV) (P<0.01). ML had the highest condensed tannin contents (P<0.05),in vitrogas production (IVGP), OMD and energy values (P<0.01). SOL had highest RFV values. OL showed the lowest IVGP when compared to SOL and ML. Low NDF and ADF contents of SOL would probably increase the voluntary intake, digestibility and relative feed values of these leaves by ruminants. In conclusion, it was determined that OL, ML and SOL used in the study have lowin vitrogas production and can be utilized as alternative roughage feed in ruminants. However, it is recommended that the results obtained from this research should be tested inin vivostudies.


1999 ◽  
Vol 50 (5) ◽  
pp. 871 ◽  
Author(s):  
Paul J. Moughan

The philosophy inherent in developing in vitro digestibility assays for dietary energy and protein is reviewed and an historical account is given of the development of such assays for the pig. General principles to be considered in the development of in vitro digestibility assays are discussed, as are limitations of the in vitro approach. The importance of choosing the most appropriate in vivo measures of digestibility for the evaluation of in vitro assays is stressed. For protein sources that do not contain anti-nutritional factors or plant fibre, ‘true’ ileal digestibility should be the in vivo baseline, while plant proteins should be tested against ‘real’ ileal digestibility. There is a dearth of adequately conducted validation studies for in vitro digestibility assays. It appears that the 3-step (pepsin, pancreatin, Viscozyme) closed in vitro system to allow prediction of organic matter and gross energy digestibility in the pig has particular promise for practical feed evaluation. Similarly based protein digestibility assays may require further development before they can be applied with confidence.


2021 ◽  
Vol 50 (5) ◽  
Author(s):  
T. Ayaşan ◽  
E. Sucu ◽  
I. Ülger ◽  
H. Hızlı ◽  
P. Cubukcu ◽  
...  

Tiger nut (Cyperus esculentus L.), or chufa, is a plant that is found in nature and is cultivated for its edible tubers. The purpose of this study was to determine the chemical composition, nutritive value, and in vitro digestibility of three tiger nut varieties using the in vitro gas production technique. These varieties were Sarışeker (yellow), Introduction 1, and Balyumru (brown). Rumen fluid was obtained from two cannulated Holstein animals. Time-dependent in vitro gas production was monitored at 3, 6, 9, 12, 24, 48, 72, and 96 hours of incubation. The varieties differed in dry matter (DM), crude ash (CA), ether extract (EE), neutral detergent fibre (NDF), and non-fibre carbohydrate (NFC) content (P <0.05). They also differed in the instantaneous volume of gas produced and in time-dependent gas production. Balyumru produced more gas at the onset of incubation than Introduction 1 and Sarışeker. However, over time, the gas produced by digestion of Introduction 1 exceeded the other two varieties. The amounts of gas produced at each time-point were intercorrelated. It is recommended that these results should lead to further evaluation in in vivo studies. Keywords: chemical composition, energy content, in vitro gas production


Author(s):  
Jeannie M Everington ◽  
D I Givens

Compared with stack treatment the literature contains little information on the nutritive value of cereal straws treated with ammonia in “ovens” at elevated temperature. Recently,Mason et al (1987) and Givens et al (1987) have studied in vitro and in vivo respectively the effect on chemical composition, digestibility and energy value of treating barley, wheat and oat straws with ammonia by the oven method. Substantial changes in chemical composition and nutritive value were found as a result of treatment.Reid and Ørskov (1987) have suggested that the dry matter (DM) degradation characteristics of straw as measured by the nylon bag technique provide a good prediction of its nutritive value. The aims of the experiment reported here were therefore to examine using the straws of Mason et al (1987), the effect of oven ammonia treatment on the DM degradation characteristics and to assess whether these parameters could be used to predict the metabolisable energy (ME) content of the straws.


2010 ◽  
Vol 148 (6) ◽  
pp. 723-733 ◽  
Author(s):  
H. KHALILVANDI-BEHROOZYAR ◽  
M. DEHGHAN-BANADAKY ◽  
K. REZAYAZDI

SUMMARYThe current study was conducted to determine chemical composition, nutrient content and availability, metabolizable energy (ME) content and nutritive value of sainfoin hay for ruminants. Three ruminally cannulated Holstein cows were used forin situandin vivoexperiments, to determine rumen degradability and digestibility of sainfoin hay. Apparent total tract digestibility of nutrients was determined with feeding of sainfoin hay as the sole diet to achieve 10% more than maintenance energy requirements. Six Zandi ewes were used in the palatability experiment. Means for dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and condensed tannins (CTs) of sainfoin hay were: 940·4 g/kg and 93·43, 12·13, 47·87, 43·33 and 2·13 g/kg DM, respectively.In situeffective degradability of CP and DM were 0·38 and 0·54 g/g with a ruminal outflow rate of 0·05/h, respectively. OM apparent digestibility was in the range of 0·592–0·689, respectively, for Tilley & Terry and total faecal collection assays. ME content of sainfoin hay, according to different methods (gas production,in vitroandin vivodetermined digestible organic matter in dry matter (DOMD)) was in the range 6·87–10·11 MJ/kg DM. Metabolizable protein (MP) content was 483·4 g/kg CP. Sainfoin was more palatable than alfalfa for sheep. It was concluded that sainfoin has a potential use in ruminant rations, especially if environmental conditions are not suitable for alfalfa production.


1996 ◽  
Vol 1996 ◽  
pp. 142-142
Author(s):  
A.C. Longland ◽  
S.P. Bray ◽  
A.E. Brooks ◽  
M.K. Theodorou ◽  
A.G. Low

In vitro methods which can be used to predict the nutritive value of feedstuflfs for livestock are attractive in terms of both speed and economy. The in vitro pressure transducer technique (PTT) whereby the gas evolved during the in vitro fermentation of feedstuffs in rumen fluid is quantified by a pressure transducer, has been used to predict the nutritive value of ruminant feedstuffs. Here the potential for the PTT in predicting the digestible energy contents of eight feedstuffs varying in non-starch polysaccharide (NSP) content fed to growing pigs, was investigated.


Sign in / Sign up

Export Citation Format

Share Document