Comparative tolerance of tropical grain legumes to salinity

1985 ◽  
Vol 36 (3) ◽  
pp. 373 ◽  
Author(s):  
BA Keating ◽  
MJ Fisher

The tolerances of a range of tropical grain legumes to salinity were compared during early vegetative growth of plants grown in pots with NaCl added to a sandy loam soil to achieve electrical conductivities (sat. extract, ECe) over the range, 1.3-13.8 dS m-1. Tolerance, based on the ECe at 50% of maximum growth (in parenthesis) was of the order: Sesbania cannabina (13.2 dS m-1) > guar cv. CP 177 (10.1 dS m-1) > guar cv. Brooks (9.8 dS m-1) > cowpea cv. Caloona (9.0 dS m-1) > soybean CPI 26671 (6.7 dS m-1) > pigeon pea cv. Hunt (5.4 dS m-1) > black gram cv. Regur (5.0 dS m-1) > pigeon pea cv. Royes (4.9 dS m-1) > green gram cv. Celera (3.5 dS m-1). Genotypes exhibited differences in Na+ accumulation, with black gram, green gram and pigeon pea accumulating large quantities in shoot tissues, compared with effective exclusion of Na+ by Sesbania, guar and soybean. Smaller relative differences existed between species in terms of Cl- uptake, and the relative yield reduction was closely related to the amount of cl- in shoots. These results are discussed in terms of current understanding of the nature of salt tolerance in nonhalophytes.

1982 ◽  
Vol 62 (4) ◽  
pp. 969-977 ◽  
Author(s):  
PATRICIA S. HOLLOWAY ◽  
ROBERT M. VAN VELDHUIZEN ◽  
CECIL STUSHNOFF ◽  
DAVID K. WILDUNG

Vegetative growth of lingonberries was observed on plants growing in four unsterilized, native-Alaskan substrates: coarsely-ground Lemeta peat, Fairbanks silt loam soil, a mixture of peat and silt loam soil and washed Chena very fine sandy loam soil. Following three growing seasons, plants in the peat treatment showed the greatest increase in vegetative growth as revealed by the number of new stems produced, stem length and dry weight per plant. Leaf size did not differ among substrate treatments. The leaves on plants grown in the peat substrate remained green throughout the entire experiment. The leaves of plants in all other treatments showed varying degrees of chlorosis followed by reddening and necrosis. Differences in concentration of N, P, K, Mn, Fe, Zn and Al in whole-plant tissue samples were recorded. The results indicate lingonberries should be grown in a peat substrate for maximum growth and dry matter accumulation.


1981 ◽  
Vol 97 (1) ◽  
pp. 119-124 ◽  
Author(s):  
I. P. S. Ahlawat ◽  
C. S. Saraf

SUMMARYField studies were made for 2 years on a sandy loam soil under dryland conditions of north-west India with three pigeon-pea varieties in relation to plant density and the application of phosphate fertilizer. Varieties Pusa Ageti and P4785 with better developed root system and profuse nodulation had higher grain and stalk yield, and higher N and P yield than Prabhat. Root and shoot growth and root nodulation were adversely affected with increasing plant densities in the range 50 × 103 and 150 × 103 plants/ha. Stalk and total N and P yield increased with increasing plant density. Plant density of 117 × 103 plants/ha produced maximum grain yield of 1·53 t/ha. Phosphorus fertilizer promoted root and shoot growth, intensity and volume of nodulation and increased grain, stalk, N and P yield. The effect of plant density on grain yield was more pronounced in the presence of phosphate fertilizer. The economic optimum rate of P ranged between 22·1 and 23·1 kg/ha under different plant densities.


Author(s):  
Rakesh Kumar ◽  
B.C. Sharma ◽  
Neetu Sharma ◽  
Brij Nanadan ◽  
Akhil Verma ◽  
...  

Background: Maize-wheat is the predominant cropping system of dryland ecology of Jammu region, but due to their comparatively higher input requirements especially of nutrients and water under the fragile ecology of these dry lands an untenable threat has been posed to their factor productivities. Therefore, all cropping sequences that suit and sustain better on the natural resources of the dryland ecosystems for a longer period of time needs to be explored.Methods: The treatments consisted of two oilseeds i.e. mustard) and gobhi sarson and two pulse crops i.e. chickpea and field pea taken during rabi were followed by two oilseed i.e. soybean and sesame and two pulse crops i.e. green gram and black gram grown during kharif. The experiment was laid out in randomized block design with four replications.Result: Significantly higher chickpea equivalent yield of green gram was observed with field pea- green gram sequence (10.26 q/ha) which was at par with the chickpea – green gram and field pea - black gram system. The available nitrogen status was significantly influenced and recorded highest (166.82kg/ha) under field pea- green gram system. Further overall nutrient mining by this system was quite low as compared to other systems.


2021 ◽  
Vol 3 (1) ◽  
pp. 22
Author(s):  
Pubudu Kumara ◽  
Kandiah Pakeerathan ◽  
Liyanage P. P. Deepani

Green gram (Vigna radiata (L.) R. Wilczek) is one of the most economically important grain legumes of the traditional farming systems of Sri Lanka because it is a cheap source of protein and animal feed, and sustains soil fertility by fixing atmospheric nitrogen. Weeds are one of the major problems in green gram cultivation, reducing the yield through competition, interference with harvest and harboring pests and diseases. Controlling of weeds by applying herbicides would definitely cause unexpected damage to human health and the abundant biodiversity of Sri Lanka. Therefore, an investigation was planned to evaluate the yield loss due to weeds and to determine the optimum weed free period to minimize the yield losses. Two experiments were performed. The first experiment was conducted to determine the effects of different weed functional groups on the yield of green gram. In the second experiment, weeds were continuously hand weeded and areas kept weed free. In the third, weeds were allowed to compete with green gram until 2, 3, 4, 5 or 6 weeks after cultivation. All the treatments were conducted in randomized complete block design with three replicates. The data collected on types of weed, number of pods and pod weight at 3–6 weeks after planting (WAP) were analyzed using the SAS 9.4 statistical package, and DMRT was performed to determine the best treatment combination. The results from the first experiment showed that average yield loss due to total weed populations was 54.77%. Yield loss due to grasses alone was 46.56%, far worse than broad leaves (16.49%) and sedges (18.01%) at p < 0.05. Crop stand count at 3–4 WAP was not significantly different among treatments. However, biomass weight of 50 plants, number of pods in 50 plants and grain weight of 10 plants were found to be significantly different after 3–4 WAP in weed free conditions at p < 0.05%. When the weed free period increased, the yield was increased until 3 WAP; thereafter, not significant yield increment was observed. In contrast, yield steeply declined in plots that had weeds until 3 WAP. According to the results of the present study, it can be concluded that the critical weed free period from the planting of green gram is 3 WAP. Maintaining a weed free period for 3–4 weeks is recommended to minimize the yield loss of green gram at minimal weed management cost.


1996 ◽  
Vol 36 (7) ◽  
pp. 823 ◽  
Author(s):  
JS Russell ◽  
PN Jones

Three cropping systems using 5 crop species were compared over a 10-year period on a cracking clay soil (Vertisol) in the sub-humid subtropics of eastern Australia. The 3 cropping systems were continuous (the same crop every year), alternate (the same crop every second year) and double (a winter and summer crop in the one year). There were 2 cereal crops (sorghum and wheat) and 3 grain legumes (chickpea, green gram and black gram). The effect of cropping system was measured in terms of grain and protein yields and changes in soil organic carbon (surface 0-10 cm) and nitrogen concentrations. Summer and winter rainfall was below average in 8 and 5 years out of 10, respectively. Grain yield of cereal monocultures was about twice that of legume monocultures. The potential for double cropping, despite the generally below-average rainfall, was clearly shown with the highest grain and protein yields coming from the combination of green gram (summer) and wheat (winter). Averaged over 10 years, wheat yield (1460 kg/ha. year) was identical in the continuous and alternate cropping systems. Sorghum yields were marginally higher with alternate cropping (1340 kg/ha. year) than continuous cropping (1050 kg/ha. year). With double cropping, average wheat yields were 1081 and 698 kg/ha when combined with green and black gram, respectively. Black gram gave half the average yield of either green gram or chickpea (about 300 v. 600 kg/ha). This was attributed to the indeterminate nature of the crop in an environment with variable rainfall and to the detrimental effect of above-average rainfall during harvest time. Soil nitrogen and carbon levels, with initial values of 0.22 and 2.96%, were reduced at the end of 10 years by 16 and 27% respectively. Their rate of decline did not differ between cropping systems.


2000 ◽  
Vol 27 (10) ◽  
pp. 885 ◽  
Author(s):  
Felix D. Dakora

The tribe Phaseoleae (family Leguminosae) is home to many of the annual food legumes cultivated in the tropics. Cowpea (Vigna unguiculata (L.) Walp.), Bambara groundnut (Vigna subterranea (L.) Verdc.), Kersting’s bean (Macrotyloma geocarpum L.), mung bean (Vigna radiata (L.) Wilczek) and common bean (Phaseolus vulgaris L.), all belonging to subtribe Phaseolinae, and together with soybean (Glycine max (L.) Merr., subtribe Glycininae) and pigeon pea (Cajanus cajan L., subtribe Cajaninae), are important members of the tribe Phaseoleae. These legumes are unique in their use of identical root chemical molecules to induce the expression of nodulation genes in their respective homologous microsymbionts during nodule formation. Of those studied so far, common bean, soybean, Bambara groundnut, Kersting’s bean and cowpea all use the isoflavones daidzein, genistein and coumestrol as root exudate signals to induce the expression of nod genes in their rhizobial partners. Additionally, members of the Phaseoleae tribe are easily recognised on the basis of their tropical biogeographic origin, broad host nodulation habit, route of Rhizobium entry into roots, chemotaxonomy and use of a common isoflavone biosynthetic pathway, determinate nodulation phenotype and internal nodule anatomy, xylem composition and transportable solutes of fixed N, site of NO3– reduction and metabolic response of N2-fed plants to NO3– supply. These shared traits and their potential application for agriculture are discussed in this review.


2012 ◽  
Vol 535-537 ◽  
pp. 486-494
Author(s):  
Yu Zhang ◽  
Pei Tong Cong ◽  
Shun Jun Hu ◽  
Li Hong Wang ◽  
Feng Qing Guo ◽  
...  

Based on experimental data from the five observation points during the three years, the linear subsected functions and the nonlinear s-shaped functions between the cotton relative yield and soil salt content on the salinized soil about the 0-20cm soil layer and the 0-40cm soil layer in Akesu River Irrigation District were constructed by linear regression and nonlinear least square approximation. Their applicabilities were analyzed and compared and it was found the nonlinear s-shaped function of the 0-20cm soil layer to fit better with the response relationship between the cotton relative yield and the soil salt content on the salinity soil than others in Akesu River Irrigation District.which and the indexes of cotton salt tolerance were definited, and then the indexes of cotton salt tolerance were drawn on with the function with better applicability. From the function, some indexes of salt tolerance,which contained the cotton critical soil salt content, the cotton threshold soil salt content, the soil salt content at the fastest rate of cotton relative yield reduction, and the soil salt content at the 50% cotton relative yield reduction, and so on, were determined, which can be provide as the important references for the agricultural planting, improvement of salinized soil and irrigation with saline water in Akesu River Irrigation District.


Sign in / Sign up

Export Citation Format

Share Document