scholarly journals The Root Rot-Fusarium Wilt Complex of Peas

1963 ◽  
Vol 16 (1) ◽  
pp. 55 ◽  
Author(s):  
A Kerr

At least four fungal pathogens are involved in the root rot-Fusarium wilt complex of peas which is a serious problem following intensive cropping of peas in South Australia. The pathogens are Fusarium oxysporum f. pisi race 2 Snyder & Hansen, F. solani f. pisi Snyder & Hansen, Pythium ultimum Trow, and Ascochyta pinodella L. K. Jones. In susceptible pea cultivars there is a marked interaction between F. oxysporum and P. ultimum. P. ultimum alone causes initial stunting from which plants gradually recover; F. OX1Jsporum alone probably CRuses little damage; both fungi together CRuse initial stunting followed by severe wilt symptom about 6 weeks after sowing and death 2 weeks later. The importance ofF. solani and A. pinodella has not been fully determined, but they probably cause only minor damage.

Plant Disease ◽  
2021 ◽  
Author(s):  
Dahui Liu ◽  
Qiaohuan Chen ◽  
Yuhuan Miao ◽  
Yunhan Wang ◽  
Kun Yu

Coleus forskohlii (Wild) Briq. is an aromatic plant in the Lamiaceae family cultivated primarily in India, Sri Lanka, Nepal and China (Yunnan Province). This herb is considered to have medicinal properties and the whole plant can be used to treat asthma, cancer and other diseases with remarkable efficacy. Due to the high medicinal and economic value of C. forskohlii, it has been introduced to Tongcheng (N29°18′12.24″, E113°53′59.36″), Hubei Province for cultivation. However, severe Fusarium wilt disease of C. forskohlii has been epidemic in Tongcheng since 2018 with a disease incidence of 5 to 30% in surveyed fields. This disease is characterized typically by root rot, vascular discoloration and leaf wilting of C. forskohlii (Fig 1), resulting in progressive plant death. Ten diseased plants were collected from the fields and the roots and stems were rinsed in 70% ethanol for 5 min and samples at the junction of disease and healthy tissues (0.5 × 0.5 cm2) were cutted and placed on potato dextrose agar (PDA) for fungal isolation in a dark chamber at 28°C. Eventually, ten pure isolates were obtained from hyphal-tip followed by single-spore purification on PDA. Seven of the purified isolates showed white aerial mycelium initially and secreted orange-brown pigment 8 days after incubation. Macroconidia were falciform, hyaline, three to five septate, ranging from 2.02 to 4.17 (mean 2.98 µm) × 10.05 to 21.90 µm (mean 12.04 µm) in size (n = 30) (Fig 2). These morphological characteristics resembled Fusarium oxysporum. (Leslie and Summerell 2006) and we selected one of them for molecular identification. Genome DNA was extracted from isolate (RS-4) using the CTAB method (Mahadevakumar et al. 2018). The translation elongation factor 1 alpha (EF-1α) DNA sequence was amplified using primers EF1/EF2 (Geiser et al. 2004), and the second largest subunit of RNA polymerase II (RPB2) DNA sequence was amplified using primers fRPB2-5F/fRPB2-7cR (Liu et al. 1999). The obtained EF-1α sequence of RS-4 (MW219142) showed 100% identity with that of F. oxysporum (FD_01376) (FUSARIUM-ID database). RPB2 sequences of RS-4 (MW219143) showed 100% identity with F. oxysporum (FD_01679) (FUSARIUM-ID database). Moreover, a phylogenetic tree of the EF-1α gene sequence of RS-4 was constructed based on the Neighbor-Joining method in MEGA7 software (Tamura et al. 2013) and revealed that strain RS-4 was closest to F. oxysporum (Fig 2). To test the pathogenicity of RS-4, six healthy leaves of C. forskohlii were collected and inoculated either with the colonized PDA discs (diameter, 5 mm) of RS-4 or control PDA discs, in a moist chamber at 25 ± 2°C. Five days later, brown-black lesions were observed on all inoculated leaves. However, the non-inoculated leaves were maintained asymptomatic. For in vivo pathogenicity test, twenty-day-old C. forskohlii plants (n=3) were inoculated with 106 spores/ml of the RS-4 at a position approximately 1 cm above the soil. Three seedlings treated with sterile water were used as controls. These inoculated and control seedlings were incubated in a moist chamber (25 ± 2 °C, RH 85%). Three days later, typical Fusarium rot symptoms were observed on all inoculated seedlings with rotten stems and withering leaves (Fig 2). Fungal pathogens were re-isolated from the inoculated sites of in vitro and in vivo inoculations by repeating the above isolating operation, and were reconfirmed through morphological features. This is the first report of F. oxysporum causing root rot on C. forskohlii in China. F. oxysporum is one of the most economically important fungal pathogens causing vascular wilt on a wide range of plants worldwide (Dean et al. 2012). The identification of F. oxysporum as the causal agent of the observed Fusarium wilt on C. forskohlii, is critical to the prevention and control of this disease in the future. Acknowledgement This research was supported by funding from the Key project at the central government level titled, “The ability to establish sustainable uses for valuable Chinese medicinale resources” (2060302) Reference Dean, R., et al. 2012. Mol. Plant. Pathol. 13: 414. https://doi.org/10.1111/j.1364-3703.2011.00783.x. Geiser, D. M., et al. 2004. Eur. J. Plant Pathol. 110: 473. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, U.K. Liu, Y. J., et al. 1999. Mol. Biol. Evol. 16: 1799. https://doi.org/10.1093/oxfordjournals.molbev.a026092 Mahadevakumar, S. et al. 2018. Eur. J. Plant Pathol. 151:1081. https://doi.org/10.1007/s10658-017-1415-2. Tamura, K., et al. 2013. Mol. Biol. Evol. 30: 2725. https://doi.org/10.1093/molbev/msw054.


2021 ◽  
Vol 22 (2) ◽  
pp. 822
Author(s):  
Owen Hudson ◽  
Sumyya Waliullah ◽  
James C. Fulton ◽  
Pingsheng Ji ◽  
Nicholas S. Dufault ◽  
...  

Fusarium wilt of watermelon, caused by Fusarium oxysporum f. sp. niveum (FON), is pathogenic only to watermelon and has become one of the main limiting factors in watermelon production internationally. Detection methods for this pathogen are limited, with few published molecular assays available to differentiate FON from other formae speciales of F. oxysporum. FON has four known races that vary in virulence but are difficult and costly to differentiate using traditional inoculation methods and only race 2 can be differentiated molecularly. In this study, genomic and chromosomal comparisons facilitated the development of a conventional polymerase chain reaction (PCR) assay that could differentiate race 3 from races 1 and 2, and by using two other published PCR markers in unison with the new marker, the three races could be differentiated. The new PCR marker, FNR3-F/FNR3-R, amplified a 511 bp region on the “pathogenicity chromosome” of the FON genome that is absent in race 3. FNR3-F/FNR3-R detected genomic DNA down to 2.0 pg/µL. This marker, along with two previously published FON markers, was successfully applied to test over 160 pathogenic FON isolates from Florida, Georgia, and South Carolina. Together, these three FON primer sets worked well for differentiating races 1, 2, and 3 of FON. For each marker, a greater proportion (60 to 90%) of molecular results agreed with the traditional bioassay method of race differentiation compared to those that did not. The new PCR marker should be useful to differentiate FON races and improve Fusarium wilt research.


2019 ◽  
Vol 967 ◽  
pp. 95-100
Author(s):  
Abdul Azis Ambar ◽  
Henny Setyawati ◽  
Nur Ilmi

Fusarium oxysporum (F. oxysporum) is the pathogen that caused fusarium wilt diseases on the tomatoes. The rise of the symptom was caused by secondary metabolic produced by F. oxysporum. The associated with the level of secondary metabolic pathogenesis that cause symptoms of wilt on tomatoes, but secondary metabolic excreted by F. oxysporum was not necessarily wilt in a plant. The phenomenon caused F. oxysporum producing secondary metabolic in the different concentration, either its quantity or quality. The nature of physiology being tested, observed by growing 4 isolates using a medium PDA on the temperature of 10, 15, 20, 25, 30, and 35 °C. The content of secondary metabolic measured on the four isolates using the Notz et al., (2002) and analyzed by using High-Performance Liquid Chromatography (HPLC). The results of the analysis of the nature of the physiological (colour colonies) were that every isolate planted for 8 days shows the variation of white, white redness, white yellowness until purpleness. Based on Methuen Handbook of Colour (Kornerup & Wanscher, 1978), generally isolates tested shows a bright colour, signaled with A letter at every code. Analysis HPLC on the results of secondary metabolic, either quantity or quality, sequentially were: isolates BAR (3; 1,997 ppm); ENR (3; 5,105 ppm); SID (4; 2,135 ppm) and MAL (5; 2,065 rpm). If it was seen by the relationship between the colour of colonies with the production of the secondary metabolic compound, it seemed that the older or darker colonies’ colour the more secondary compounds formed, but dark or old colonies’ colour does not determine a high quality of acid fusaric produced. Keywords: Colonies colour, F. oxysporum, secondary metabolic .


2005 ◽  
Vol 30 (4) ◽  
pp. 409-412 ◽  
Author(s):  
Juliano C. da Silva ◽  
Wagner Bettiol

This study was done to evaluate the efficiency of non-pathogenic Fusarium oxysporum isolates (141/3, 233, 233/1, 245, 245/1, 251, 251/2, 251/5, and 257) in controlling vascular wilt caused by F. oxysporum f. sp. lycopersici, race 2 (isolates C-21A, TO11, and TO245) in tomato (Lycopersicon esculentum) cv. Viradoro seedlings. In order to determine the effect of non-pathogenic F. oxysporum isolates in tomato plants, the root system of 30-day-old seedlings was immersed in conidial suspensions (10(6) ml-1) of each isolate and the seedlings were transplanted to a cultivation substrate. Thirty-five days after transplanting it was observed that the non-pathogenic F. oxysporum isolates were not pathogenic to the cv. Viradoro nor did they affect seedling development. The efficiency of the non-pathogenic F. oxysporum isolates in controlling Fusarium wilt was determined by immersing the tomato seedling roots in the conidial suspension (10(6) ml-1) of each isolate and then transplanting them into substrates previously infested with isolates of F. oxysporum f.sp. lycopersici, race 2 (10(5) conidia ml-1 of substrate). Evaluations were performed 35 days after transplanting, for severity in scale with 1=healthy plant to 6=dead plant or plant showing vessel browning and wilted leaves up to the leader shoot and seedling height. The non-pathogenic F. oxysporum isolates were efficient in reducing the severity of the disease and maintaining normal plant development. These results provide evidence of the antagonistic activity of non-pathogenic F. oxysporum isolates in controlling vascular wilt caused by F. oxysporum f. sp. lycopersici race 2 in tomato.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1326-1332 ◽  
Author(s):  
Anthony P. Keinath ◽  
Richard L. Hassell

Fusarium wilt of watermelon, caused by the soilborne fungal pathogen Fusarium oxysporum f. sp. niveum race 2, is a serious, widespread disease present in major watermelon-growing regions of the United States and other countries. ‘Fascination,’ a high yielding triploid resistant to race 1, is grown in southeastern states in fields that contain a mixture of races 1 and 2. There is some benefit to using cultivars with race 1 resistance in such fields, even though Fascination is susceptible to Fusarium wilt caused by race 2. Experiments in 2012 and 2013 were done in fields infested primarily with race 2 and a mixture of races 1 and 2, respectively. Fascination was grafted onto four rootstock cultivars: bottle gourd (Lagenaria siceraria) ‘Macis’ and ‘Emphasis’ and interspecific hybrid squash (Cucurbita maxima× C. moschata) ‘Strong Tosa’ and ‘Carnivor.’ Nongrafted and self-grafted Fascination were used as susceptible control treatments. In both experiments, mean incidence of plants with symptoms of Fusarium wilt was ≥52% in the susceptible control treatments and ≤6% on the grafted rootstocks. Disease incidence did not differ between rootstock species or cultivars. In both years, Fascination grafted onto Strong Tosa and Macis produced more marketable-sized fruit than the susceptible control treatments. Grafted Emphasis and Carnivor also produced more fruit than the control treatments in 2012. The cucurbit rootstocks suppressed Fusarium wilt caused by race 2 and increased marketable yield of triploid watermelon grown in infested soil.


1993 ◽  
Vol 73 (1) ◽  
pp. 365-367 ◽  
Author(s):  
J. C. Tu ◽  
S. J. Park

A bean (Phaseolus vulgaris) line, A - 300, resistant to Rhizoctonia solani and Fusarium oxysporum was introduced into Ontario from Colombia. The results of tests conducted in a root-rot nursery, in a greenhouse and in a growth room showed that this bean line is resistant to Fusarium solani f. sp. phaseoli and Pythium ultimum. Key words: Bean, Phaseolus vulgaris, root rot resistance


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 92-98 ◽  
Author(s):  
X. G. Zhou ◽  
K. L. Everts ◽  
B. D. Bruton

Three races (0, 1, and 2) of Fusarium oxysporum f. sp. niveum have been previously described in watermelon (Citrullus lanatus) based on their ability to cause disease on differential watermelon genotypes. Four isolates of F. oxysporum f. sp. niveum collected from wilted watermelon plants or infested soil in Maryland, along with reference isolates of races 0, 1, and 2, were compared for virulence, host range, and vegetative compatibility. Race identification was made on the watermelon differentials Sugar Baby, Charleston Gray, Dixielee, Calhoun Gray, and PI-296341-FR using a root-dip, tray-dip, or pipette inoculation method. All four Maryland isolates were highly virulent, causing 78 to 100% wilt on all differentials, one of which was PI-296341-FR, considered highly resistant to race 2. The isolates also produced significantly greater colonization in the lower stems of PI-296341-FR than a standard race 2 reference isolate. In field microplots, two of the isolates caused over 90% wilt on PI-296341-FR, whereas no disease was caused by a race 2 isolate. All four isolates were nonpathogenic on muskmelon, cucumber, pumpkin, and squash, confirming their host specific pathogenicity to watermelon. The Maryland isolates were vegetatively compatible to each other but not compatible with the race 2 isolates evaluated, indicating their genetic difference from race 2. This study proposes that the Maryland isolates belong to a new race, race 3, the most virulent race of F. oxysporum f. sp. niveum described to date.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 199-199
Author(s):  
R. C. Ploetz ◽  
J. L. Haynes

Race 3 of Fusarium oxysporum f. sp. lycopersici, cause of Fusarium wilt of tomato, Lycopersicon esculentum, was first recognized in Florida in 1982 on the west coast (Hillsborough and Manatee counties) (2). Approximately 10 years later, race 3 was reported in northeastern production areas of the state (Gadsden County) (1) and was observed on the east coast (Ft. Pierce area) (D. O. Chellemi, personal communication). During the 1998 to 1999 season, mature plants of Sanibel, a commercial tomato cultivar with resistance to races 1 and 2, were observed with symptoms of Fusarium wilt at the University of Florida's Tropical Research and Education Center in Homestead. Approximately 20% of the plants were conspicuously wilted, chlorotic, and necrotic in all or unilateral portions of the canopy. Internal, vascular discoloration in affected plants extended far into the canopy, distinguishing the disease from Fusarium crown rot, caused by F. oxysporum f. sp. radicis-lycopersici. Pure colonies of fungi were isolated from surface-disinfested (10 s with 70% ethanol, 2 min with 10% bleach) stem segments on potato dextrose agar (PDA) amended with streptomycin (100 mg/liter), rifamycin (50 mg/liter), and a commercial miticide (Danitol 2EHC [4 drops/liter]). Isolates were identified as F. oxysporum due to their production of typical falcate macroconidia with foot-shaped basal cells, microconidia borne in false heads only on mono-phialides, and chlamydospores. In replicated (three) greenhouse trials, six single-spore isolates were used to root-dip inoculate (107 conidia per ml) seedlings of differential tomato cultivars (Bonnie Best, no resistance; Manapal, race 1 resistance; Walter, race 1 and race 2 resistance). All isolates were pathogenic on each of the differential cultivars, and one isolate, 2-1, caused severe damage on Walter (mean rating of 3.5 on a 1 to 5 scale). The results were repeated in a second trial with the most virulent isolate. In both trials, pure colonies of F. oxysporum were recovered from symptomatic seedlings. Southeastern Florida is the last major tomatoproduction area in Florida to be affected by race 3 of F. oxysporum f. sp. lycopersici. References: (1) D. O. Chellemi and H. A. Dankers. Plant Dis. 76:861, 1992. (2) R. B. Volin and J. P. Jones. Proc. Fla. State Hortic. Soc. 95:268, 1982.


HortScience ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 261-262 ◽  
Author(s):  
Mark J. Henning ◽  
Henry M. Munger ◽  
Molly M. Jahn

`PMR Delicious 51' is a new and improved version of the `Delicious 51' eastern type melon (Cucumis melo L.). It was developed in the Department of Plant Breeding at the Cornell University Agricultural Experiment Station in Ithaca, N.Y. It is well adapted for northeastern U.S. conditions and shows potential for good adaptation in the northwest. It is well suited for home gardeners, market gardeners, and commercial growers who want to grow an open-pollinated (OP) melon. `PMR Delicious 51' has excellent resistance to powdery mildew races 1 and 2 (Podosphaera xanthi) and resistance to fusarium wilt (Fusarium oxysporum f. sp. melonis) race 2.


Sign in / Sign up

Export Citation Format

Share Document