Low- and High-temperature Storage Effects on Viability and Germinability of Seeds of Three Australian Asteraceae

1999 ◽  
Vol 47 (2) ◽  
pp. 265 ◽  
Author(s):  
Zalynn Peishi ◽  
Julie A. Plummer ◽  
David T. Bell ◽  
David W. Turner ◽  
D. Choengsaat

Commercialisation of many Australian everlasting daisy (Asteraceae) species islimited by poor germination, due in part to dormancy. This study examined theeffect of storage temperatures of 5, 15, 25 and 38°C on seed viability andgerminability of Schoenia filifolia subsp.subulifolia, Rhodanthe chlorocephala subsp.rosea and an unnamed species ofCraspedia. Short-term storage (< 18 months) at cooltemperatures increased seed moisture content, reduced viability and did notpromote germination. However, storage at high temperatures decreased seedmoisture content, maintained viability and improved germination. In tests oflong-term (> 24 months) storage in ambient conditions, both viability andgerminability declined in cohorts of Schoenia andRhodanthe. Detailed tests on 8-month-old seeds ofSchoenia revealed that dormancy was not due tomechanical barriers, as scarification did not improve germination. However,gibberellic acid (GA3) and KNO3applications overcame the dry-storage requirement to break dormancy in thisspecies. High-temperature, dry storage is an important treatment to breakdormancy for planting arid-zone Asteraceae seeds of less than 6 months of age.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Suma ◽  
Kalyani Sreenivasan ◽  
A. K. Singh ◽  
J. Radhamani

The role of relative humidity (RH) while processing and storing seeds ofBrassicaspp. andEruca sativawas investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species ofBrassicawas also evaluated. The samples were stored at40±2°Cin sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour,B. rapaandB. junceawere better performers thanB. napusandEruca sativa.


2006 ◽  
Vol 41 (9) ◽  
pp. 1435-1441 ◽  
Author(s):  
Roberto Usberti ◽  
Eric Hywel Roberts ◽  
Richard Harold Ellis

The objective of this work was to determine the viability equation constants for cottonseed and to detect the occurrence and depletion of hardseededness. Three seedlots of Brazilian cultivars IAC-19 and IAC-20 were tested, using 12 moisture content levels, ranging from 2.2 to 21.7% and three storage temperatures, 40, 50 and 65ºC. Seed moisture content level was reached from the initial value (around 8.8%) either by rehydration, in a closed container, or by drying in desiccators containing silica gel, both at 20ºC. Twelve seed subsamples for each moisture content/temperature treatment were sealed in laminated aluminium-foil packets and stored in incubators at those temperatures, until complete survival curves were obtained. Seed equilibrium relative humidity was recorded. Hardseededness was detected at moisture content levels below 6% and its releasing was achieved either naturally, during storage period, or artificially through seed coat removal. The viability equation quantified the response of seed longevity to storage environment well with K E = 9.240, C W = 5.190, C H = 0.03965 and C Q = 0.000426. The lower limit estimated for application of this equation at 65ºC was 3.6% moisture content.


2018 ◽  
Vol 21 (1) ◽  
pp. 131-141
Author(s):  
MR Ali ◽  
MM Rahman ◽  
MA Wadud ◽  
AHF Fahim ◽  
MS Nahar

Soybean (Glycine max) seed loses its viability in the storage which causes shortage in supply of quality seed and consequently hinders the expansion of soybean cultivation in Bangladesh.Losses of seed viability of soybean (Glycine max) in traditional storage is very common in the tropical environment. An experiment was conducted at the Seed Laboratory, Regional Agricultural Research Station, Bangladesh Agricultural Research Institute (BARI), Jamalpur in 2011 and 2012 to find out the effect of seed moisture content and types of storage container on soybean seed germination and seedling vigour. In 2011, soybean seed having 94% initial germination was stored at 8, 10 and 12% moisture levels but in 2012 seeds having 96% initial germination was stored at 6, 8, 10 and 12% initial moisture levels in four different types of storage containers viz., polythene bag, plastic pot, tin can and glass jar. weredays after storage ().The experiment was arranged in a factorial completely randomized design with three replications. In 2011, high germination of soybean seed (77-85%) was retained at 200 DAS for those stored at 8% initial seed moisture content (SMC) in any of the containers. Germination index and seedling dry matter decreased with increased initial seed moisture content irrespective of storage containers used. Tin preserved higher seed moisture contents of 9.93, 11.71 and 14.15% for seed stored at 8%, 10% and 12% initial seed moisture content, respectively. In 2012, 80-94% seed germination was retained at 200 DAS for those stored at 6% initial SMC in any of the containers. The germination declined to a range between 75.0 and 91.3% within 200 DAS at 8% initial SMC while those stored at 12% SMC showed rapid germination loss and the value showed down to between 9.3 and 22.0%. Vigour index and seedling dry matter decreased with increased initial seed moisture content irrespective of storage containers used. Tin also Seeds stored in tin container showed the higher final seed moisture contents irrespective of initial seed moisture content. Bangladesh Agron. J. 2018, 21(1): 131-141


Weed Science ◽  
1981 ◽  
Vol 29 (4) ◽  
pp. 402-404 ◽  
Author(s):  
Marc A. Cohn ◽  
J. A. Hughes

The effect of postharvest storage temperature (–15, 5, 20, and 30 C) on seed dormancy of red rice [Oryza sativa L. ‘strawhulled (SH)’], an annual species, was studied. Intact and dehulled (by hand) seeds were dormant at harvest. Intact seeds were nondormant (greater than 90% germination at 30 C) after dry storage at 20 or 30 C for 4 weeks after harvest. In intact seeds stored dry at 5 C, the degree of dormancy was dependent upon postharvest exposure time at 20 C prior to storage. Dormancy of intact seeds decreased at 5 C as this initial postharvest exposure to 20 C was increased from 2 to 7 days. This effect of initial 20 C exposure was independent of seed moisture content (11 to 12%). After dry storage of intact seeds at 5 C, dehulling promoted germination. Germination of such dehulled seeds increased with increasing storage time at 5 C up to 11 months when complete germination occurred. The response of seeds dehulled immediately after dry storage at 5 C was independent of prior exposure time (2 to 7 days) at 20 C. Storage at −15 C prevented all forms of dry-afterripening for 1 yr.


2021 ◽  
Vol 19 (3) ◽  
pp. 78-84
Author(s):  
A Najam ◽  
L Abdullah ◽  
Panca dewi manu hara Karti ◽  
S Hoeman

Sorghum bicolor var. Samurai 2 can be used as raw material in silage production for ruminant feed. The problem encountered is the difficulty of obtaining certified seeds for commercial sorghum production. So that is necessary to do this research to investigate potential sorghum seed production and its quality of Sorghum bicolor var. Samurai 2. The study was conducted at University Research Station-Jonggol Animal Education and Research Unit, Bogor Agricultural University. The experimental design used was a randomized block design with 4 treatments and 5 replicates. Five individual plants were taken to measure the variables at each treatment set. The treatments consisted of different harvesting times, namely P95 (harvested 95 days after planting), P100, P105 and P110. The variables observed were dry weight of shelled seeds, seed weight per panicle, weight of panicle stalk, panicle weight, seed production per ha, seed moisture content, seed viability test, and shoot biomass production per ha. The results showed that seed production per ha, panicle dry matter weight, fresh seed moisture content, panicle stalk dry weight was not significantly different. Dry weight of shelled seeds, dry weight of seeds per panicle, panicle dry weight, seed viability, weight of biomass per ha were significantly different (p<0.05). The potential for the production of shelled seeds, dry matter of seeds per panicle was the best in the P105 and P110, the viability of the seeds in the P105 and shoot biomass production per ha in the P105. The potential for shelled seed production (4038 kg ha-1), seed dry weight per panicle (54.87 g panicle-1), seed viability (92.8%) and the best biomass production (55.88 tons ha-1) were in treatment P105. Key words:        seed production, shoot biomass, Sorghum bicolor, viability


2016 ◽  
Vol 34 (3) ◽  
pp. 219
Author(s):  
Ari Wahyuni ◽  
M. R. Suhartanto ◽  
Abdul Qadir

<p>Soybean seed viability declines during seed storage. Soybean seed deteriorates rapidly, affected by its high protein content and often high humidity in the tropical environment. This research was aimed to develop dynamic model of soybean seed viability in an open storage. The study was conducted in three stages, namely: 1) desk study, 2) seed storage experiment, 3) development of seed storage model, simulation and verification of the model. The second stage of the experiment consisted of soybean seed storing and germination testing using completely randomized design. Treatments were three initial moisture content (7-8%, 9-10% and 11-12%) and four varieties of soybean (Anjasmoro, Wilis, Detam-1 and Detam-2). The results showed that the seed behaviour during storage period were affected by initial seed moisture content, initial viability, varieties and environmental condition. Therefore, seed moisture content, initial viability and varieties may be used as input model. Moisture content, integreting seed respiration, electric conductivity and seed storability vigor (VDSDB) were as model output. Simulation of Seed Storability Vigor Prediction Model with Model Construction Layer-Stella (MCLS) using relative humidity (RH), temperature, seed permeability, initial moisture content and initial viability as input model could logically predict the seed moisture content and seed storability vigor (VDSDB).</p>


1992 ◽  
Vol 2 (3) ◽  
pp. 336-344 ◽  
Author(s):  
A.G. Taylor ◽  
J. Prusinski ◽  
H.J. Hill ◽  
M.D. Dickson

Water is pervasively involved in the life cycle of seeds. Water in the environment, either as a vapor or liquid, directly affects seed moisture status. This article is devoted to the study of seed moisture status in postharvest events. Two topics are discussed: imbibitional chilling injury and upgrading of primed seeds. Imbibitional chilling injury is a physiological disorder that occurs in large-seeded legumes as well as other important agronomic seeds. Imbibitional chilling injury has been shown to reduce the survival rate of seedlings. Surviving seedlings have less emergence force per seedling and require a longer period to generate maximum force. Rapid hydration has been shown to induce injury at a particular seed moisture level. Methods of regulating the hydration rate were explored to alleviate chilling injury in snap beans (Phaseolus vulgaris L.) Plant breeding lines with the semihard seed characteristic delayed the onset of imbibition when the initial moisture level was low (8%). Coating seeds with polymeric films to complement the permeable testa retarded the imbibition rates. Both approaches alleviated chilling injury and improved seedling establishment under stressful conditions. Seed priming is a technique for elevation of seed moisture content before sowing. Primed seeds generally emerge more quickly than nonprimed seeds, especially under stressful environmental conditions. An additional merit of this technique is that it gives access to seeds with elevated moisture content. Various approaches may be employed to condition seeds after priming, but before redesiccation. Discarding the low-density fractions of primed tomato and lettuce seeds improved the percentage of germination compared with nonprimed seeds. Physiological mechanisms are presented to explain the association of density with seed viability in lettuce (Lactuca sativa L.).


HortScience ◽  
1995 ◽  
Vol 30 (5) ◽  
pp. 1003-1006 ◽  
Author(s):  
William J. Carpenter ◽  
Eric R. Ostmark ◽  
John A. Cornell

Various combinations of temperature and moisture contents were used in evaluating the seed storage of nine genera of annual flowers. Relative humidity (RH) levels of 11%, 32%, 52%, and 75% provided wide ranges in seed moisture during storage at 5, 15, and 25C. At each temperature, total germination percentages (G) generally declined as seed moisture content increased during storage. The seed moisture range giving the highest G after 12 months of storage was determined for each temperature and plant genus. For all genera, seed moisture contents during storage increased as storage temperatures increased at constant RH levels. Moisture contents at 25C storage were 37%, 34%, 29%, and 20% higher than at 5C when RH levels were at 11%, 32%, 52%, and 75%, respectively.


Sign in / Sign up

Export Citation Format

Share Document