scholarly journals Molecular Chemistry for Solar Fuels: From Natural to Artificial Photosynthesis

2012 ◽  
Vol 65 (6) ◽  
pp. 564 ◽  
Author(s):  
Ann Magnuson ◽  
Stenbjörn Styring

The world needs new, environmentally friendly, and renewable fuels to exchange for fossil fuels. The fuel must be made from cheap, abundant, and renewable resources. The research area of solar fuels aims to meet this demand. This paper discusses why we need a solar fuel, and proposes solar energy as the major renewable energy source to feed from. The scientific field concerning artificial photosynthesis is expanding rapidly and most of the different scientific visions for solar fuels are briefly reviewed. Research strategies for the development of artificial photosynthesis to produce solar fuels are overviewed, with some critical concepts discussed in closer detail.

2015 ◽  
Vol 6 (2) ◽  
Author(s):  
Vladan Mićić ◽  
Pero Dugić ◽  
Zoran Petrović ◽  
Milorad Tomić

The use of fossil fuels results in global warming and pollution. In comparison with fossil fuels biofuels represent an eco-friendly, biodegradable, sustainable, cost-competitive and promising alternative energy source. They contain high energy content and do not contribute to greenhouse effect. Therefore, using cheap or renewable resources as the feedstock for biofuels production has a great potential in terms of a major contribution to future energy supply. The production and use of biofuels is already well established and a further promotion of these fuels such as lipid biofuels (bioethanol, pure plant oils and biodiesel) and gas biofuels (biomethane, biohydrogen) mainly depends on non-technical issues, such as policies and cost–effectiveness. Biofuels will definitely stay for the foreseeable future and still can continue to provide the earth and the human population with a relatively clean source of energy with several benefits such as economic benefits of providing employment and health benefits of reduced carbon emissions, leading to cleaner air. With increasing sophistication of technology and intense research and development done, one can safely infer that biofuel will become more appealing and applicable for use on a globally commercial level. As such, biofuel is acknowledged as the Earth’s future energy source. Until a newer and cleaner energy source is discovered, scientists will definitely persist in researching and enhancing biofuels to make them more cost-effective, while still being environmentally friendly.


Inorganics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 29 ◽  
Author(s):  
Christos Mavrokefalos ◽  
Greta Patzke

The expected shortage of fossil fuels as well as the accompanying climate change are among the major challenges of the 21st century. A global shift to a sustainable energy landscape is, therefore, of utmost importance. Over the past few years, solar technologies have entered the energy market and have paved the way to replace fossil-based energy sources, in the long term. In particular, electrochemical solar-to-hydrogen technologies have attracted a lot of interest—not only in academia, but also in industry. Solar water splitting (artificial photosynthesis) is one of the most active areas in contemporary materials and catalysis research. The development of low-cost, efficient, and stable water oxidation catalysts (WOCs) remains crucial for artificial photosynthesis applications, because WOCs still represent a major economical and efficient bottleneck. In the following, we summarize recent advances in water oxidation catalysts development, with selected examples from 2016 onwards. This condensed survey demonstrates that the ongoing quest for new materials and informed catalyst design is a dynamic and rapidly developing research area.


Green ◽  
2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Anders Thapper ◽  
Stenbjörn Styring ◽  
Guido Saracco ◽  
A. William Rutherford ◽  
Bruno Robert ◽  
...  

AbstractOn the path to an energy transition away from fossil fuels to sustainable sources, the European Union is for the moment keeping pace with the objectives of the Strategic Energy Technology-Plan. For this trend to continue after 2020, scientific breakthroughs must be achieved. One main objective is to produce solar fuels from solar energy and water in direct processes to accomplish the efficient storage of solar energy in a chemical form. This is a grand scientific challenge. One important approach to achieve this goal is Artificial Photosynthesis. The European Energy Research Alliance has launched the Joint Programme “Advanced Materials & Processes for Energy Applications” (AMPEA) to foster the role of basic science in Future Emerging Technologies. European researchers in artificial photosynthesis recently met at an AMPEA organized workshop to define common research strategies and milestones for the future. Through this work artificial photosynthesis became the first energy research sub-field to be organised into what is designated “an Application” within AMPEA. The ambition is to drive and accelerate solar fuels research into a powerful European field – in a shorter time and with a broader scope than possible for individual or national initiatives. Within AMPEA the Application Artificial Photosynthesis is inclusive and intended to bring together all European scientists in relevant fields. The goal is to set up a thorough and systematic programme of directed research, which by 2020 will have advanced to a point where commercially viable artificial photosynthetic devices will be under development in partnership with industry.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Egidius Rutatizibwa Rwenyagila

This study reviews and describes some of the existing research and mechanisms of operation of organic photovoltaic (OPV) cells. Introduced first are problems that exist with traditional fossil fuels that result in most of the world energy challenges such as environmental pollution. This is followed by the description of baseline organic solar cell (OSC) structures and materials. Then, some of the existing modelling approaches that have implemented either a one- or a two-dimensional drift-diffusion model to examine OSC structures are reviewed, and their reproducibility is examined. Both experimental and modelling approaches reviewed are particularly important for more and better designed research to probe practical procedural problems associated with OSCs that hinder the commercialization of OPV technology.


2015 ◽  
Vol 5 (3) ◽  
pp. 20150029 ◽  
Author(s):  
Thomas Faunce

This paper introduces a theme issue of Interface Focus derived from papers presented at the Royal Society supported meeting ‘Do we need a global project on artificial photosynthesis?’ held at Chicheley Hall in July 2014. At that meeting, leaders of national solar fuels and chemicals projects and research presented ‘state of the art’ on artificial photosynthesis (AP) in the context of the policy challenges for globalizing a practical technology to address climate change and energy and food security concerns. The discussions included contributions from many experts with legal and policy skills and uniquely focused on producing principles for prioritizing and specializing work while enhancing the funding and attendant public policy profile. To this end, representatives of major public, philanthropic and private potential stakeholders in such a project (such as the Wellcome Trust, the Moore Foundation, Shell, the Leighty Foundation, the EPSRC and Deutsche Alternative Asset Management) were invited to provide feedback at various points in the meeting. For this Interface Focus issue, speakers at the Chicheley Hall meeting were required to present a snapshot of their cutting edge research related to AP and then draw upon the Chicheley Hall discussions to innovatively analyse how their research could best be advanced by a global AP project. Such multidisciplinary policy analysis was not a skill many of these researchers were experienced or trained in. Nonetheless their efforts here represent one of the first published collections to attempt such a significant task. This introduction contains a brief summary of those papers, focusing particularly on their policy aspects. It then summarizes the core discussions that took place at the Chicheley Hall meeting and sets out some of the central ethical principles that were considered during those discussions.


2019 ◽  
Vol 4 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Phuoc Quy Phong Nguyen ◽  
Van Huong Dong

The world is constantly seeking new sources of energy to replace the use of coal and fossil fuels to generate electricity. And a strong source of energy from the ocean is one of the hopes of scientists around the world. Ocean energy is an endless renewable energy source for making electricity used for the world. Marine technology was once considered too expensive to be a viable source of alternative clean energy, especially compared to already developed products such as wind and solar. However, with the increased price of oil and the issues of global warming and national security, U.S. coastal sites are looking to add ocean energy to their renewable energy portfolios. This paper gives an overview of ocean energy technologies, focusing on two different types: wave, tidal. It outlines the operating principles, the status, and the efficiency and cost of generating energy associated with each technology.


2020 ◽  
Vol 10 (2) ◽  
pp. 29-37
Author(s):  
Alexandra Rajczi ◽  
Irén Wickert

The energy consumption of the world, and thus of Hungary, is growing rapidly, and to date fossil fuels have had a major role. During agricultural production those kinds of by-products are generated the utilization of which is not organised effectively enough. The basis of biogas generation comes from agricultural by-products which could not be utilized in other cases, so its positive impact on the environment is beyond dispute contrary to fossil fuels. Alternative energy efficiency requirements in rural areas, besides the effects, have both economic and social benefits. The study looks for the answer to the question how the by-products produced in Hungarian agriculture and the sustainable development of the countryside are produced.


2003 ◽  
Vol 125 (01) ◽  
pp. 36-39 ◽  
Author(s):  
Jeffrey Winters

This article reviews today’s wind turbines that are a far cry from the windmills that once reached into the rural sky to pump water for irrigation. A single utility-scale turbine, built from European designs, can provide enough electricity to power more than a thousand homes when the wind is blowing. Wind power is increasingly viewed as an ecologically friendly energy source, without the carbon emissions of fossil fuels or the watershed wrecking force of hydropower. Wind power enthusiasts point out that wind is the fastest-growing source of electricity in the world. In the United States alone, the amount of installed wind power grew by 66 percent in 2001, according to the American Wind Energy Association in Washington. WTC’s two-bladed design makes the most of the lightness the downwind configuration can offer. Each blade is reinforced by a hydraulic piston running from the hub, and the root itself is attached to the rotor shaft by a hinged coupling. The pistons can reposition each blade independently over the course of a single rotor sweep.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


Sign in / Sign up

Export Citation Format

Share Document