Quantum yields of the primary photoaquation reactions of octacyanomolybdic-(IV) acid and octacyanotungstic(IV) acid

1972 ◽  
Vol 25 (3) ◽  
pp. 499 ◽  
Author(s):  
RP Mitra ◽  
BK Sharma ◽  
H Mohan

The quantum yield of the primary photoaquation reaction of octacyano- molybdio(1V) acid and octacyanotungstic(IV) acid has been determined by direct estimation of the two products of the reaction, viz., a CN- ion and a red heptacyano-aquo complex. The CN- ion was estimated polarographically, the red photoproduct spectrophotometrically. Both the methods gave the same value of the quantum yield, which was about 0.88 for the molybdenum and 0.78 for the tungsten system. Photolysis was done at O�C. This and the fact that acidic conditions were maintained during the photolysis sufficiently stabilized the red species to reveal, if the time of irradiation was not too long, an isosbestic point where only two species, the red complex and the M(CN)84- ion, were in equilibrium. The quantum yield was determined subject to the condition that the absorbance curve of the photolysed solution passed through the isosbestic point and secondary reactions had not yet set in.

Author(s):  
Anja Busemann ◽  
Ingrid Flaspohler ◽  
Xue-Quan Zhou ◽  
Claudia Schmidt ◽  
Sina K. Goetzfried ◽  
...  

AbstractThe known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2’:6’,2″-terpyridine, bpy = 2,2’-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates. Graphic abstract


1981 ◽  
Vol 59 (11) ◽  
pp. 1607-1609 ◽  
Author(s):  
Karl R. Kopecky ◽  
Rodrigo Rico Gomez
Keyword(s):  

The quantum yields for photolysis of 0.25 M solutions of bicyclo[3.1.0]hexan-3-one, 1,5-dimethylbicyclo[3.1.0]hexan-3-one, and tricyclo[4.3.1.0]decan-8-one in pentane or cyclohexane with 313 nm light are 0.44, 0.52, and 0.32, respectively.


2021 ◽  
pp. 1-10
Author(s):  
Ibrahim Erden ◽  
Betül Karadoğan ◽  
Fatma Aytan Kılıçarslan ◽  
Göknur Yaşa Atmaca ◽  
Ali Erdoğmuş

This work describes the synthesis, spectral and fluorescence properties of bis 4-(4-formyl-2,6-dimethoxyphenoxy) substituted zinc (ZnPc) and magnesium (MgPc) phthalocyanines. The new compounds have been characterized by elemental analysis, UV-Vis, FT-IR, 1H-NMR and mass spectra. Afterward, the effects of including metal ion on the photophysicochemical properties of the complexes were studied in biocompatible solvent DMSO to analyze their potential to use as a photosensitizer in photodynamic therapy (PDT). The fluorescence and singlet oxygen quantum yields were calculated as 0.04–0.15 and 0.70–0.52 for ZnPc and MgPc, respectively. According to the results, MgPc has higher fluorescence quantum yield than ZnPc, while ZnPc has higher singlet oxygen quantum yield than MgPc. The results show that the synthesized complexes can have therapeutic outcomes for cancer treatment.


1999 ◽  
Vol 71 (2) ◽  
pp. 321-335 ◽  
Author(s):  
Angela Salinaro ◽  
Alexei V. Emeline ◽  
Jincai Zhao ◽  
Hisao Hidaka ◽  
Vladimir K. Ryabchuk ◽  
...  

In the preceding article [Serpone and Salinaro, Pure Appl. Chem., 71(2), 303-320 (1999)] we examined two principal features of heterogeneous photocatalysis that demanded scrutiny: (i) description of photocatalysis and (ii) description of process efficiencies. For the latter we proposed a protocol relative photonic efficiency which could subsequently be converted to quantum yields. A difficulty in expressing a quantum yield in heterogeneous photochemistry is the very nature of the system, either solid/liquid or solid/gas, which places severe restrictions on measurement of the photon flow absorbed by the light harvesting component, herein the photocatalyst TiO2, owing to non-negligible scattering by the particulates. It was imperative therefore to examine the extent of this problem. Extinction and absorption spectra of TiO2 dispersions were determined at low titania loadings by normal absorption spectroscopy and by an integrated sphere method, respectively, to assess the extent of light scattering. The method is compared to the one reported by Grela et al. [J. Phys. Chem., 100, 16940 (1996)] who used a polynomial extrapolation of the light scattered in the visible region into the UV region where TiO2 absorbs significantly. This extrapolation underestimates the scattering component present in the extinction spectra, and will no doubt affect the accuracy of the quantum yield data. Further, we report additional details in assessing limiting photonic efficiencies and quantum yields in heterogeneous photocatalysis.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1102
Author(s):  
Wojciech Baran ◽  
Ewa Masternak ◽  
Dominika Sapińska ◽  
Andrzej Sobczak ◽  
Ewa Adamek

The aim of our study was to assess the possibility of using the photocatalytic process conducted in the presence of TiO2 to obtain new stable derivatives of antibacterial drugs. The possibility of introducing hydroxyl, chlorine, or bromide groups into antibiotics molecules was investigated. The experiments were conducted in aqueous solutions in the presence of TiO2-P25 as a photocatalyst, Cl− and Br- ions, and antibiotics belonging to eight different chemical classes. All experiments were initiated by UVa radiation. The kinetics of photocatalytic reactions and their quantum yield were determined, and the stable products were identified. All of the antibiotics used in the experiments underwent a photocatalytic transformation, and the quantum yields were in the range from 0.63 to 22.3%. The presence of Br- or FeCl3 significantly increased the efficiency of the photocatalytic process performed in the presence of TiO2, although Br- ion also acted as an inhibitor. Potentially biologically active chlorine derivatives from Trimethoprim, Metronidazole, Chloramphenicol, and bromine derivatives from Trimethoprim, Amoxicillin were obtained under experimental conditions. The potentially inactive halogen derivatives of Sulfamethoxazole and hydroxyl derivatives described in the literature were also identified.


Author(s):  
Te-Fu L. Ho ◽  
James R. Bolton ◽  
Ewa Lipczynska-Kochany

AbstractA broadband method has been applied to determine the quantum yields for the photochemical removal of three common pollutants: phenol, 4-chlorophenol and N-nitrosodimethylamine (NDMA) in dilute aqueous solution. Flash photolysis (xenon flash lamps) was used to cause a significant amount of photolysis without photolyzing intermediates. The analysis of reactant depletion following a single flash was carried out by high- performance liquid chromatography (HPLC) or UV/visible absorption spectroscopy. The method for determining quantum-yields employed p-benzoquinone as an actinometer and was validated by determining the average (200-400 nm) quantum yield for the generation of hydroxyl radicals from the photolysis of hydrogen peroxide (0.90 ± 0.10) and the quantum yields for the photolysis of phenol (0.13 ± 0.02) and 4-chlorophenol (0.24 ± 0.04). The values determined agree very well with the literature ones obtained with monochromatic radiation. The quantum yield for the direct photolysis of NDMA was found to be 0.11 ± 0.03 at neutral pH and 0.27 ± 0.02 at pH 2-4. Under conditions where hydrogen peroxide is the principal absorber, the NDMA quantum yield is 0.32 ± 0.04, independent of pH in the range 2-8.


Author(s):  
Shuai Yang ◽  
Yuning Wu ◽  
Fangyu Yue ◽  
Ruijuan Qi ◽  
Bin Jiang ◽  
...  

By optimizing Debye temperature, we identified two extremely efficient phosphors based on the S-P transition of Bi3+. The quantum yields of Sr0.99Ga1.50B2O7: 0.01Bi3+, 0.50Al3+ and Ba0.995Ga1.60B2O7: 0.005Bi3+, 0.40Al3+ phosphors reach...


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1312 ◽  
Author(s):  
Konstantinos Dimos

Due to their unique properties of photoluminescence, biocompatibility, photostability, ease of preparing, and low cost, carbon dots have been studied extensively over the last decade. Soon after their discovery, it was realized that their main optical attributes may be protected, enhanced, and tuned upon proper surface passivation or functionalization. Therefore, up to date, numerous polymers have been used for these purposes, resulting to higher-quality carbon dots regarding their quantum yield or further emission-related aspects and compared to the primitive, bare ones. Hence, this review aims to clarify the polymers’ role and effect on carbon dots and their features focusing on the quality characteristics of their photoluminescence upon passivation or functionalization. Given in fact the numbers of relevant publications, emphasis is given on recent articles capturing the latest advances for polymers in carbon dots for expanding emission lifetimes, advancing quantum yields, tuning emission wavelengths, enhancing specific spectral range absorption, and tailoring optoelectronic properties in general.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Sangeun Cho ◽  
Sungwoo Kim ◽  
Jongmin Kim ◽  
Yongcheol Jo ◽  
Ilhwan Ryu ◽  
...  

Abstract Compared with solid scintillators, liquid scintillators have limited capability in dosimetry and radiography due to their relatively low light yields. Here, we report a new generation of highly efficient and low-cost liquid scintillators constructed by surface hybridisation of colloidal metal halide perovskite CsPbA3 (A: Cl, Br, I) nanocrystals (NCs) with organic molecules (2,5-diphenyloxazole). The hybrid liquid scintillators, compared to state-of-the-art CsI and Gd2O2S, demonstrate markedly highly competitive radioluminescence quantum yields under X-ray irradiation typically employed in diagnosis and treatment. Experimental and theoretical analyses suggest that the enhanced quantum yield is associated with X-ray photon-induced charge transfer from the organic molecules to the NCs. High-resolution X-ray imaging is demonstrated using a hybrid CsPbBr3 NC-based liquid scintillator. The novel X-ray scintillation mechanism in our hybrid scintillators could be extended to enhance the quantum yield of various types of scintillators, enabling low-dose radiation detection in various fields, including fundamental science and imaging.


1977 ◽  
Vol 32 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Marlis F. Mirbach ◽  
Manfred J. Mirbach ◽  
Alfons Saus

The photochemical cycloaddition of 1,3-cyclohexadiene (CHD) to ethylene and acetylene at pressures above 10 bar is described. Upon sensitized irradiation (2-acetylnaphthaline) CHD adds to ethylene at room temperature in dichloromethane to give cis-bicyclo[4,2,0]-oct-2-ene (1) along with dimers of cyclohexadiene. The yield of cross adduct increases with ethylene pressure (10-50 bar) whereas dimerisation decreases. Quantum yields of cross addition and dimerisation at 12 M ethylene were determined to be 0.31 and 0.35 respectively. At a pressure of 15 bar acetylene CHD reacts with acetylene to give bicyclo-[4,2,0]octa-2,7-diene (2) and bicyclo[2,2,2]octa-2,5-diene (3) as the major and minor products respectively. In a solvent mixture containing 60 vol-% CH2Cl2 and 40 vol-% acetone (2) is formed with a quantum yield of φ = 0.2. The experimental results are explained by a formal kinetic scheme.


Sign in / Sign up

Export Citation Format

Share Document