Impact of high temperature on pollen germination and spikelet sterility in rice: comparison between basmati and non-basmati varieties

2010 ◽  
Vol 61 (5) ◽  
pp. 363 ◽  
Author(s):  
Bidisha Chakrabarti ◽  
P. K. Aggarwal ◽  
S. D. Singh ◽  
S. Nagarajan ◽  
H. Pathak

Increased temperature due to global warming may reduce pollen germination and induce spikelet sterility in rice crops. Anthesis is the most sensitive stage in rice and exposure to high temperature during this period may cause reduction in floral reproduction. Increased temperature will have different effects on different rice varieties. In the present study the effect of high temperature on pollen as well as on spikelet sterility in basmati (aromatic) and non-basmati (non-aromatic) rice varieties was quantified. Rice varieties were grown at 11 different sowing dates, to see the effect of varying temperature on pollen and spikelet sterility. Rise in temperature increased pollen sterility and reduced germination of pollen grains on the stigma. Temperature above 33°C during anthesis gradually increased pollen sterility in all rice cultivars. At 35.5°C, variety Pusa Sugandh 2 (basmati) recorded a pollen sterility of 17% and 26% reduction in pollen germination. The principal cause of sterility was reduced anther dehiscence and less pollen deposition on the stigma at higher temperature. Increased temperature during the grain-filling period also increased spikelet sterility in rice and variety Pusa Sugandh 2 was most affected. Non-basmati rice varieties were less affected by increased temperature than basmati types. The study indicated that increasing temperature could limit rice yield by affecting pollen germination and grain formation. It also suggested that sensitivity of pollen grains to temperature damage could be taken as one of the most important parameters for predicting rice yield in warmer climates.

2012 ◽  
Vol 39 (12) ◽  
pp. 1009 ◽  
Author(s):  
Viola Devasirvatham ◽  
Pooran M. Gaur ◽  
Nalini Mallikarjuna ◽  
Raju N. Tokachichu ◽  
Richard M. Trethowan ◽  
...  

High temperature during the reproductive stage in chickpea (Cicer arietinum L.) is a major cause of yield loss. The objective of this research was to determine whether that variation can be explained by differences in anther and pollen development under heat stress: the effect of high temperature during the pre- and post-anthesis periods on pollen viability, pollen germination in a medium, pollen germination on the stigma, pollen tube growth and pod set in a heat-tolerant (ICCV 92944) and a heat-sensitive (ICC 5912) genotype was studied. The plants were evaluated under heat stress and non-heat stress conditions in controlled environments. High temperature stress (29/16°C to 40/25°C) was gradually applied at flowering to study pollen viability and stigma receptivity including flower production, pod set and seed number. This was compared with a non-stress treatment (27/16°C). The high temperatures reduced pod set by reducing pollen viability and pollen production per flower. The ICCV 92944 pollen was viable at 35/20°C (41% fertile) and at 40/25°C (13% fertile), whereas ICC 5912 pollen was completely sterile at 35/20°C with no in vitro germination and no germination on the stigma. However, the stigma of ICC 5912 remained receptive at 35/20°C and non-stressed pollen (27/16°C) germinated on it during reciprocal crossing. These data indicate that pollen grains were more sensitive to high temperature than the stigma in chickpea. High temperature also reduced pollen production per flower, % pollen germination, pod set and seed number.


2014 ◽  
Vol 8 ◽  
pp. 120-126 ◽  
Author(s):  
Bal K. Joshi ◽  
Laxmi P. Subedi ◽  
Santa B. Gurung ◽  
Ram C. Sharma

Pollen analysis can be used to discriminate between different species, identify possible  interspecies hybrids, identify restorer and maintainer lines, useful to study genetics of  restorer gene, interaction between chromosome and cytoplasm and relationship between  parents. Pollen abortion system of male sterility is an important tool in hybrid rice  production and spikelet is the major yield components. Nine improved cultivars, six  landraces and three wild aborted cytoplasmic-genetic male sterile (CMS) lines were used to  analyze pollen and spikelet in F1 rice hybrids and their parents. The frequency of pollen  categories and its relationship to spikelet fertility were investigated. Pollen sterility of the  F1s was determined by staining pollen grains in 1% potassium iodide-iodine (I-KI) solution.  Spikelet fertility was determined by counting the total number of seed set in proportion to  the total number of spikelets. Correlation and regression coefficients for some traits were  computed. In hybrids, pollen fertility ranged from 0.5 to 82% and spikelet fertility from 0 to  87%. Pollen fertility varied from 28 to 97%, while spikelet fertility from 73 to 91% in pollen  parents. The highest and the lowest percentages of pollen fertility were found in Chaite-6  and Chiunde cultivars respectively. Spikelet fertility percentage varied widely among  hybrids and many hybrids had lower spikelet fertility percentage than their parents.  Therefore, it is of practical importance to understand the causes of high spikelet sterility in  hybrids for possible increase in spikelet fertility. Highly significant positive correlation was  found between stained round fertile (SRF) pollen and spikelet fertility. The positive value of  correlation and regression coefficient on SRF and spikelet fertility were found between F1  and mid parent, and F1 and male parent. High fertility of cross may be due to the presence of  a wide compatibility gene or restorer genes in the cultivar. Lower pollen and spikelet  fertility of the crosses was attributed to effect of the genetic background of the tester parent. Nepal Agric. Res. J. Vol. 8, 2007, pp. 120-126 DOI: http://dx.doi.org/10.3126/narj.v8i0.11605  


2017 ◽  
Vol 21 ◽  
Author(s):  
Robert Brian Patchett ◽  
Gavin Ballantyne ◽  
Patricia Gillian Willmer

Estimating the pollen-deposition effectiveness of flower visitors is fundamental to understanding their performance as pollinators. While estimates of visitation rates, pollen loads, and single visit deposition (SVD) are all useful proxies for performance, and so help to reveal the relative effectiveness of different visitors, none take into account the breeding system of the plants, or the quality of pollen deposited. Here we compare the performance of visitors to the self-incompatible plant Brassica rapa (turnip) using SVD and pollen germination. We also report the first use of the staining of Brassica rapa stigma papilla cells (known to reveal a specific reaction to self-pollen) to compare self-pollen deposition between insect visitors. We found that most of the pollen grains deposited by insect visitors (and therefore counted by SVD methods) were non-germinating self-pollen. A smaller proportion of grains were outcrossed and so germinated. There was also a significant positive relationship between environmental conditions (wind speed) and pollen deposition, but not pollen germination.Both methods identified Bombus spp. as the best-performing visitors on turnip flowers, followed by Eristalis spp., whereas performance estimates for Episyrphus balteatus and ‘other hoverflies’ were no higher than controls for both methods. This study provides further insight into the methodology for estimating pollinator performance, especially in plants when only cross-pollen can germinate. 


1970 ◽  
Vol 35 (1) ◽  
pp. 157-165 ◽  
Author(s):  
MA Mannan ◽  
MSU Bhuiya ◽  
HMA Hossain ◽  
MIM Akhand

The experiment was conducted with different Basmati rice varieties at the Bangladesh Rice Research Institute (BRRI) farm, Gazipur during 1999 and 2000 T.aman season. Four rice genotypes (Basmati PNR, Basmati 370, Basmati 375 and Basmati-D) were tested with 0, 25, 50, 75 and 100 kg N/ha to determine the optimum N level as well as to find out the genotype having high yield potential. The plant height, tiller number, number of panicles, panicle length, spikelet sterility and straw yield increased with the increase of nitrogen levels upto 75 kg N/ha. Maximum plant growth at the highest level of N caused lodging of plant which increased spikelet sterility and lower number of grains per panicle and ultimately decreased grain yield. Genotype Basmati PNR having dwarf plant characteristics performed well at higher level of nitrogen (100 kg N/ha), while other genotypes having medium plant height responded well at lower level of nitrogen (52-56 kg N/ha). Keywords: Basmati rice; nitrogen; aman season. DOI: 10.3329/bjar.v35i1.5877Bangladesh J. Agril. Res. 35(1) : 157-165, March 2010


2019 ◽  
Vol 157 (04) ◽  
pp. 283-299 ◽  
Author(s):  
C. Malumpong ◽  
S. Cheabu ◽  
C. Mongkolsiriwatana ◽  
W. Detpittayanan ◽  
A. Vanavichit

AbstractThe reproductive stage of rice is the most sensitive to heat stress, which can lead to spikelet sterility. Thus, heat-tolerant and heat-susceptible genotypes were used to investigate their differences in terms of phenotypic responses and expression changes of Hsf genes at the pre-flowering stage under heat stress. Results clearly showed that panicles had the highest temperature compared with other plant parts under both natural and heated conditions. However, the temperatures of tolerant and susceptible genotypes were not significantly different. In terms of spikelet fertility, the tolerant lines M9962 and M7988 had high seed set because their anther dehiscence, pollen viability and pollen germination were only slightly affected. In contrast, the susceptible line Sinlek showed severe effects at all steps of fertilization, and the pollen viability of M7766 was slightly affected under heat stress but was more affected in terms of anther dehiscence and pollen germination. Both susceptible lines showed dramatically decreased seed set. In addition, the expression of six HsfA genes in the flag leaves and spikelets at the R2 stage of plants under heat stress showed different responses. Notably, expression of the HsfA2a gene was predominantly upregulated in the flag leaf and spikelets under heat stress in M9962. Therefore, it can be concluded that heat stress has severe effects on the stamen, and that different genotypes have different susceptibilities to heat stress.


2021 ◽  
Vol 58 (1) ◽  
pp. 43-48
Author(s):  
Dalibha Pathak ◽  
Umesh Ch. Kalita

Sixteen genotypes of rice (including one check) were evaluated on 18 quantitative traits during sali (August), 2018 in a randomized block design with three replications at Instruction cum Research Farm, Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat to study the nature and magnitude of variability, heritability and genetic advance under delayed sown condition. The analysis of variance for 18 quantitative traits revealed the presence of significant differences for grain yield and its component characters. The highest genotypic coefficient of variation (GCV) and phenotypic coefficient of variation (PCV) was observed for chaffs per panicle followed by grains per panicle, spikelet sterility (%), spikelets per panicle, grain yield (kg/ha). A high heritability coupled with high genetic advance was observed for plant height (cm), spikelets per panicle, spikelet sterility (%), chaffs per panicle, grains per panicle, grain yield (g/hill), grain yield (kg/ha), biological yield (kg/ha), straw weight (kg/ha) and harvest index (%) indicating that selection might be effective for improvement of these characters under delayed sown condition with low input. From the findings of this investigation, one genotype viz., Gandhari emerged as the outstanding genotype which yielded 4170 kg/ha and could be directly used for cultivation in delayed sown situation with low inputs. Some other promising genotypes that yielded higher than the check Manoharsali under delayed sown condition were JR 29, JR 16, Basundhara and JR 60 and could be utilized as potential parental material in the hybridization programmes designed to develop suitable rice varieties for delayed sown situation.


Author(s):  
E.Y. Papulova ◽  
◽  
K.K Olkhovaya

The work shows that application of increased doses of nitrogen does not significantly affect the total milling yield and affects the head rice content. The ambiguous nature of the variability of the grain quality of rice varieties under conditions of different doses of nitrogen fertilizers confirms the need for further studies of the varietal reaction to the level of nitrogen nutrition, based on it - the development of rice cultivation technology modes in order to obtain rice yield with high grain quality.


Sign in / Sign up

Export Citation Format

Share Document