Soil phosphorus—crop response calibration relationships and criteria for oilseeds, grain legumes and summer cereal crops grown in Australia

2013 ◽  
Vol 64 (5) ◽  
pp. 499 ◽  
Author(s):  
Michael J. Bell ◽  
Philip W. Moody ◽  
Geoffrey C. Anderson ◽  
Wayne Strong

Australian cropping systems are dominated by winter cereals; however, grain legumes, oilseeds and summer cereals play an important role as break crops. Inputs of phosphorus (P) fertiliser account for a significant proportion of farm expenditure on crop nutrition, so effective fertiliser-use guidelines are essential. A national database (BFDC National Database) of field experiments examining yield responses to P fertiliser application has been established. This paper reports the results of interrogating that database using a web application (BFDC Interrogator) to develop calibration relationships between soil P test (0–10 cm depth; Colwell NaHCO3 extraction) and relative grain yield. Relationships have been developed for all available data for each crop species, as well as for subsets of those data derived by filtering processes based on experiment quality, presence of abiotic or biotic stressors, P fertiliser placement strategy and subsurface P status. The available dataset contains >730 entries but is dominated by data for lupin (Lupinus angustifolius; 62% of all P experiments) from the south-west of Western Australia. The number of treatment series able to be analysed for other crop species was quite small (<50–60 treatment series) and available data were sometimes from geographic regions or soil types no longer reflective of current production. There is a need for research to improve information on P fertiliser use for key species of grain legumes [faba bean (Vicia faba), lentil (Lens culinaris), chickpea (Cicer arietinum)], oilseeds [canola (Brassica napus), soybean (Glycine max)] and summer cereals [sorghum (Sorghum bicolor), maize (Zea mays)] in soils and farming systems reflecting current production. Interrogations highlighted the importance of quantifying subsurface P reserves to predict P fertiliser response, with consistently higher 0–10 cm soil test values required to achieve 90% maximum yield (CV90) when subsurface P was low (<5 mg P/kg). This was recorded for lupin, canola and wheat (Triticum aestivum). Crops grown on soils with subsurface P >5 mg/kg consistently produced higher relative yields than expected on the basis of a 0–10 cm soil test. The lupin dataset illustrated the impact of improving crop yield potentials (through more effective P-fertiliser placement) on critical soil test values. The higher yield potentials arising from placement of P-fertiliser bands deeper in the soil profile resulted in significantly higher CV90 values than for crops grown on the same sites but using less effective (shallower) P placement. This is consistent with deeper bands providing an increased and more accessible volume of profile P enrichment and supports the observation of the importance of crop P supply from soil layers deeper than 0–10 cm. Soil P requirements for different species were benchmarked against values determined for wheat or barley (Hordeum vulgare) grown in the same regions and/or soil types as a way of extrapolating available data for less researched species. This approach suggested most species had CV90 values and ranges similar to winter cereals, with evidence of different soil P requirements in only peanut (Arachis hypogaea – much lower) and field pea (Pisum sativum – slightly higher). Unfortunately, sorghum data were so limited that benchmarking against wheat was inconclusive.


2013 ◽  
Vol 64 (5) ◽  
pp. 514 ◽  
Author(s):  
Ross F. Brennan ◽  
Michael J. Bell

The Better Fertiliser Decision for Crops (BFDC) National Database holds historic data for 356 potassium (K) fertiliser rate experiments (431 treatment series) for different rain-fed grain crops and soil types across Australia. Bicarbonate-extractable K (Colwell soil-test K) is the most extensively used soil test reported in the database. Data are available for several crop species grown on a range of soil types from all states except Tasmania. Species represented and number of treatment series in the database are: wheat (Triticum aestivum L.), 254; barley (Hordeum vulgare L.), 5; canola (Brassica napus L.), 130; lupin (Lupinus angustifolius L.), 32; sunflower (Helianthus annuus L.), 10; sorghum (Sorghum bicolor L.), 5; and faba bean (Vicia faba L.), 2. About 77% of the available soil-test K (STK) data on wheat, canola, and lupin are from Western Australia. The usual sampling depth of 0–10 cm is recorded for all treatment series within the database, while 68% of experiments have STK information from other soil horizons down the profile, usually in 10-cm increments. The BFDC Interrogator, a comprehensive data search and calibration support tool developed for use with the BFDC National Database, was used to examine STK–yield relationships for each crop across Australia, with more detailed analysis by state/region and then by soil type if data were available. The BFDC Interrogator was used to determine a critical STK concentration to achieve 90% of the maximum relative yield (90%RY) for each crop species, with a critical range (determined by the 70% confidence limit for the 90%RY) also reported. The STK for 90%RY for wheat was 40–41 mg/kg on Tenosols and Chromosols, ~49 mg/kg on Kandosols, and ~64 mg/kg on Brown Ferrosols. There was some evidence of critical values increasing with increasing crop yield and on soils with no acidity constraints to root growth, with effects presumably driven by increased crop K demand. The STK for 90%RY for canola, grown mainly on Tenosols, was similar to that for wheat, ranging from 43 to 46 mg K/kg, but for lupin, also grown mainly on Tenosols, the STK for 90%RY was a relatively low ~25 mg K/kg. Data for sunflower were limited and the STK for 90%RY was poorly defined. A comparison of critical STK concentrations for different crops grown on Tenosols suggested that critical ranges for 90%RY of lupin (22–27 mg K/kg) were significantly lower than that for wheat (32–52 mg K/kg) and canola (44–49 mg K/kg). Critical STK values were not determined for sorghum and faba bean.



2018 ◽  
Vol 102 (4) ◽  
pp. 11-13
Author(s):  
Florencia Sucunza ◽  
Flavio Gutiérrez Boem ◽  
Fernando García ◽  
Miguel Boxler ◽  
Gerardo Rubio

Data from long-term crop rotation study sites were combined to evaluate the effect of long-term application (and omission) of P fertilizers. The impact of maintaining either a negative or positive P balances on soil test P at five distinct sites was described by single response functions despite a range of differences in soil properties.



2013 ◽  
Vol 64 (5) ◽  
pp. 523 ◽  
Author(s):  
Geoffrey C. Anderson ◽  
Ken I. Peverill ◽  
Ross F. Brennan

Accurate definition of the sulfur (S) soil test–crop grain yield increase (response) relationship is required before soil S test measurements can be used to if there are likely to be responses to S fertilisers. An analysis was done using the Better Fertiliser Decision for Crops (BFDC) National Database using a web application (BFDC Interrogator) to develop calibration relationships between soil S tests (KCl-40 and MCP) using a selection of sampling depths and grain relative yields (RY). Critical soil test values (CSTV) and critical soil test ranges (CSTR) were defined at RY 90%. The ability of the KCl-40 extractable S soil test to predict grain yield response to applied S fertiliser was examined for wheat (Triticum aestivum L.) grown in Western Australia (WA), New South Wales (NSW), and Victoria and canola (Brassica napus L.) grown in WA and NSW. A smaller dataset using MCPi-extractable S was also assessed. The WA-grown wheat KCl-40 S CSTV, using sampling depth to 30 cm for soil types Chromosols (Coloured), Chromosols (Sesqui-Nodular), Kandosols (Grey and Yellow), Tenosols (Brown and Yellow), and Tenosols (Grey, Sesqui-Nodular), was 2.8 mg kg–1 with an associated CSTR 2.4–3.2 mg kg–1 and a correlation coefficient (r) 0.87. Similarly, KCl-40 S CSTV was defined using sampling depth to 10 cm for these selected soil types and for wheat grown on Vertosols in NSW. The accuracy of the KCl-40 S CSTV for canola grown in WA was improved using a sampling to a depth of 30 cm instead of 10 cm for all soil types. The canola KCl-40 S CSTV using sampling depth to 30 cm for these soil types was 7.2 mg kg–1 with an associated CSTR 6.8–7.5 and an r value 0.70. A similar KCl-40 S CSTV of 7.0 mg kg–1 was defined using a sampling depth of 10 cm, but the CSTR was higher (6.4–7.7 mg kg–1) and the r value lower (0.43). A lower KCl-40 S CSTV of 3.9 mg kg–1 or 31.0 kg ha–1 using a sampling depth of 60 cm was defined for canola grown in NSW using a limited number of S-rate calibration treatment series. Both MCPi (r = 0.32) and KCl-40 (r <0.20) soil S test–NSW canola response relationships using a 0–10 cm sampling depth were weak. The wheat KCl-40 S CSTR of 2.4–3.2 mg kg–1 can be used widely on soil types where soil sulfate is not leached during the growing season. However, both the WA canola CSTR of 6.4–7.2 mg kg–1 using a sampling depth of 30 cm and NSW canola CSTR of 25–39 kg ha–1 or 3.1–4.9 mg kg–1 using a sampling depth of 60 cm can be considered in regions outside of WA and NSW.



2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.



2020 ◽  
Vol 12 (8) ◽  
pp. 3222
Author(s):  
Kehinde Oluseyi Olagunju ◽  
Myles Patton ◽  
Siyi Feng

The production stimulating impact of agricultural subsidies has been a well-debated topic in agricultural policy analysis for some decades. In light of the EU reform of the Common Agricultural Policy (CAP) in year 2005 in which agricultural subsidies were decoupled from current production decisions and the modification to this payment in 2015, this study investigates the impact of decoupled payments under these two reforms on livestock production in Northern Ireland. The study uses a farm-level panel dataset covering 2008–2016 period and employs an instrumental variable fixed effect model to control for relevant sources of endogeneity bias. According to the empirical results, the production impacts of decoupled payments were positive and significant but with differential impacts across livestock production sectors, suggesting that decoupled payments still maintain a significant effect on agricultural production and provide an indication of the supply response to changes in decoupled payments.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Z. Y. Su ◽  
J. J. Powell ◽  
S. Gao ◽  
M. Zhou ◽  
C. Liu

Abstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. Conclusions Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance.



2021 ◽  
Vol 42 (Supplement_1) ◽  
pp. S2-S3
Author(s):  
Callie Abouzeid ◽  
Audrey E Wolfe ◽  
Gretchen J Carrougher ◽  
Nicole S Gibran ◽  
Radha K Holavanahalli ◽  
...  

Abstract Introduction Burn survivors often face many long-term physical and psychological symptoms associated with their injury. To date, however, few studies have examined the impact of burn injuries on quality of life beyond 2 years post-injury. The purpose of this study is to examine the physical and mental well-being of burn survivors up to 20 years after injury. Methods Data from the Burn Model System National Database (1997–2020) were analyzed. Patient-reported outcome measures were collected at discharge with a recall of preinjury status, and then at 5, 10, 15, and 20 years after injury. Outcomes examined were the Physical Component Summary (PCS) and Mental Component Summary (MCS) of the Short Form-12. Trajectories were developed using linear mixed methods model with repeated measures of PCS and MCS scores over time and controlling for demographic and clinical variables. The model fitted score trajectory was generated with 95% confidence intervals to demonstrate score changes over time and associations with covariates. Results The study population included 420 adult burn survivors with a mean age of 42.4 years. The population was mainly male (66%) and white (76.4%) with a mean burn size of 21.5% and length of hospital stay of 31.3 days. Higher PCS scores were associated with follow-up time points closer to injury, shorter hospital stay, and younger age. Similarly, higher MCS scores were associated with earlier follow-up time points, shorter hospital stay, female gender, and non-perineal burns. MCS trajectories are demonstrated in the Figure. Conclusions Burn survivors’ physical and mental health worsened over time. Such a trend is different from previous reported results for mental health in the general population. Demographic and clinical predictors of recovery over time are identified.



2004 ◽  
Vol 31 (6) ◽  
pp. 597 ◽  
Author(s):  
Peter R. Brown ◽  
Micah J. Davies ◽  
Grant R. Singleton ◽  
J. David Croft

The impacts of a range of farm-management practices on house mouse (Mus domesticus) populations were tested in a large replicated field study in a complex irrigated farming system in southern New South Wales, Australia. An advisory panel, made up of farmers, extension officers, industry representatives and scientists developed a series of best-practice farm-management actions to minimise the impact of mice. Twelve experimental sites were split into six treated sites, where farmers were encouraged to conduct the recommended practices, and six untreated sites, where farmers conducted their normal farming practices. Mouse abundance was generally low to moderate for the 4-year project (5–60% adjusted trap success). We found significant reductions in population abundance of mice on treated sites when densities were moderate, but no differences when densities were low. Biomass of weeds and grasses around the perimeter of crops were significantly lower on treated sites because of applications of herbicide sprays and grazing by sheep. We could not detect any significant difference in mouse damage to crops between treated and untreated sites; however, levels of damage were low (<5%). Yields of winter cereals and rice crops were significantly higher on treated sites by up to 40%. An analysis of benefits and costs of conducting farming practices on treated sites compared with untreated sites showed a 2 : 1 benefit to cost ratio for winter cereals, 9 : 1 for rice and 4 : 1 for soybeans.



2007 ◽  
Vol 87 (1) ◽  
pp. 73-83 ◽  
Author(s):  
D. Kimaragamage ◽  
O O Akinremi ◽  
D. Flaten ◽  
J. Heard

Quantitative relationships between soil test phosphorus (STP) methods are needed to guide P management especially in manured soils with high P. Our objectives were: (i) to compare amounts of P extracted by different methods; (ii) to develop and verify regression equations to convert results among methods; and (iii) to establish environmental P thresholds for different methods, in manured and non-manured soils of Manitoba. We analyzed 214 surface soil samples (0–15 cm), of which 51 had previous manure application. Agronomic STP methods were Olsen (O-P), Mehlich-3 (M3-P), Kelowna-1 (original; K1-P), Kelowna-2 (modified; K2-P), Kelowna-3 (modified; K3-P), Bray-1 (B1-P) and Miller and Axley (MA-P), while environmental STP methods were water extractable (W-P), Ca Cl2 extractable (Ca-P) and iron oxide impregnated filter paper (FeO-P) methods. The different methods extracted different amounts of P, but were linearly correlated. For an O-P range of 0–30 mg kg-1, relationships between O-P and other STP were similar for manured and nonmanured soils, but the relationships diverged at higher O-P levels, indicating that one STP cannot be reliably converted to another using a single equation for manured and non-manured soils at environmentally critical P levels (0–100 mg kg-1 O-P). Suggested environmental soil P threshold ranges, in mg P kg-1, were 88–118 for O-P, 138–184 for K1-P, 108–143 for K2-P, 103–137 for K3-P, 96–128 for B1-P, 84–111 for MA-P, 15–20 for W-P, 5–8 for Ca-P and 85–111 for FeO-P. Key words: Phosphorus, soil test phosphorus, manured soils, non-manured soils, environmental threshold



2004 ◽  
Vol 47 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Júlio C. Franchini ◽  
Marcos A. Pavan ◽  
Mário Miyazawa

The objective of this study was to evaluate if cover crops can absorb P from the upper layers and transport it in their roots to subsoil layers. Samples of an Oxisol were placed in PVC columns. Super phosphate fertilizer was applied to the 0-10 cm soil surface layers. The cover crops tested were: Avena strigosa, Avena sativa, Secale cereale, Pisum sativum subsp arvense, Pisum sativum, Vicia villosa, Vicia sativa, Lupinus angustifoliu, Lupinus albus, and Triticum aestivum. After a growth period of 80 days the cover crop shoots were cut off and the soil was divided into 10cm layers and the roots of each layer were washed out. The roots and shoots were analyzed separated for total P contribution to the soil. Considerable amount of P was present in the roots of cover crops. Vicia sativa contained more than 60% of total plant P in the roots. The contribution of Vicia sativa to soil P bellow the fertilized zone was about 7 kg ha-1. It thus appeared that there existed a possibility of P redistribution into the soil under no tillage by using cover crops in rotation with cash crops. Vicia sativa was the most efficient cover crop species as P carrier into the roots from superficial layer to lower layers.



Sign in / Sign up

Export Citation Format

Share Document