Effects of sheep grazing management on cocksfoot herbage mass and persistence in temperate environments

2000 ◽  
Vol 40 (2) ◽  
pp. 185 ◽  
Author(s):  
A. L. Avery ◽  
D. L. Michalk ◽  
R. P. Thompson ◽  
P. Ball ◽  
T. Prance ◽  
...  

Cocksfoot (Dactylis glomerata L.) is among the most important perennial grass species sown in temperate Australia. Newly sown cocksfoot pastures were established on 5 commercial farms (sites), in the temperate high-rainfall (>600 mm annual rainfall) zone of eastern Australia. Experiments were located on these commercial farms, and were measured from September 1993 to August 1996, to compare the effect of seasonal sheep grazing management strategies with continuous grazing (control treatment) on cocksfoot herbage mass and plant frequencies. Each experiment had 8 common grazing treatments and up to 5 local treatments, with 2 replicates and 2 years of start for treatments. Cocksfoot herbage mass under continuous grazing declined at 2 sites, remained stable at 2 sites and increased at 1 site. No single grazing strategy had a significant linear (time) effect on cocksfoot herbage mass across sites and at the completion of monitoring in 1996 there were few treatments with a significant increase in fitted values for cocksfoot herbage mass compared to the continuously grazed control. Under moderate grazing pressure (8–10 dry sheep equivalents) cocksfoot pastures appeared to be relatively stable and unresponsive to grazing management and therefore continuous grazing seems to be appropriate. High grazing pressure in summer (herbage mass below 1000 kg/ha) can reduce cocksfoot persistence and in drought stock should be removed from cocksfoot pastures. Summer seasonal closure increased cocksfoot frequency at all sites, except Four Mile Creek and Dundee. These studies have shown it is possible to improve cocksfoot herbage mass through the implementation of strategic grazing practices, particularly over summer and early autumn.

2018 ◽  
Vol 58 (12) ◽  
pp. 2269 ◽  
Author(s):  
D. Real ◽  
C. M. Oldham ◽  
A. van Burgel ◽  
E. Dobbe ◽  
J. Hardy

Tedera (Bituminaria bituminosa C.H Stirt. vars. albomarginata and crassiuscula) is a traditional forage species for goats in the Canary Islands, Spain. It has agronomic characteristics ideally suited to Mediterranean-like climates that allows it to provide high quality green forage for grazing animals during summer and autumn. It can be used to extend the growing season into late spring and early summer and/or to reduce or eliminate the need for expensive hand feeding of grain and hay to sheep to fill the ‘feed gap’ during the dry season in southern Australian farming systems. Three sheep grazing experiments were carried out with the objective to evaluate sheep production during summer and autumn with tedera as the sole diet. A 3-ha site at Dandaragan, Western Australia was grazed during the summer and autumn of 2014–2015 and 2016 and a 2.4-ha site was grazed at Kojonup, Western Australia during the same period in 2016. At each site, two grazing treatments were evaluated, continuous grazing and rotational grazing with six plots (14 days of grazing and 70 days of recovery). The first hypothesis tested was that tedera plants would not survive continuous grazing during summer and autumn. The second hypothesis tested was that without hand feeding, 10 dry sheep equivalents/ha would be able to at least maintain weight and condition score during summer and autumn. The third hypothesis tested was that rotational grazing would improve the production of the sheep (liveweight and condition score) compared with continuous grazing. The first hypothesis was rejected, the population of tedera plants did not significantly decline due to being continuously grazed during summer and autumn. The second hypothesis was confirmed, at the three experimental sites, 10 dry sheep equivalents/ha were able to at least maintain weight and condition score without any hand feeding. The third hypothesis was partially rejected; continuous grazing had a better performance of the sheep than rotational grazing. However, the rotational grazing plots had more tedera on offer in the remaining grazing plots in the rotation with the potential for a longer grazing time. These three experiments clearly demonstrate that tedera can be used to reduce or eliminate expensive hand feeding during summer and autumn using the simplest and least expensive grazing management; continuous grazing.


2000 ◽  
Vol 40 (2) ◽  
pp. 225 ◽  
Author(s):  
D. L. Garden ◽  
G. M. Lodge ◽  
D. A. Friend ◽  
P. M. Dowling ◽  
B. A. Orchard

Grazing management strategies to alter botanical composition of native pastures were investigated at 4 locations in the high rainfall zone of south-east Australia, including Tasmania. These studies were conducted as part of the Temperate Pasture Sustainability Key Program, which evaluated the effects of grazing management on a wide range of pasture types between 1993 and 1996. Pastures in this study were based on Aristida ramosa/Bothriochloa macra, Microlaena stipoides–Austrodanthonia spp. or Themeda triandra–Austrodanthonia spp. Seasonal rests, increased grazing pressure in spring, mob stocking and cutting for hay were compared to continuous grazing at all sites. In addition, specific local treatments were tested at individual sites. Changes in composition resulting from the treatments were minimal at most sites. This may have been due to a combination of the inherent stability of the pastures, the relatively short duration of the experiments, and the drought conditions experienced, which minimised differences between treatments. Some strategies to alter composition of natural pastures are suggested. In the Aristida–Bothriochloa pasture there was a general decrease in Aristida and an increase in Bothriochloa, which was largely unaffected by the type of grazing management applied. The combination of drought conditions and increasing grazing pressure was sufficient to alter composition without specific management strategies being necessary. In the Themeda–Austrodanthonia pasture, resting in spring, 12-month rests or cutting for hay (which involved a spring rest) allowed Themeda to increase in the pasture. The Microlaena–Austrodanthonia pastures were very stable, especially where annual grass content was low. However, certain treatments allowed Microlaena to increase, a result which is regarded as being favourable. The major effects in these latter pastures were on undesirable species. Vulpia spp. were reduced by resting in autumn and increased spring grazing pressure, while Holcus lanatus was increased dramatically by resting in spring and was also increased by resting in autumn or winter, but only when conditions were suitable for growth of this species. In many cases, treatment differences were only expressed following recovery from drought, showing that timing of grazing management to achieve change is critical.


2003 ◽  
Vol 43 (8) ◽  
pp. 977 ◽  
Author(s):  
J. F. Graham ◽  
B. R. Cullen ◽  
G. M. Lodge ◽  
M. H. Andrew ◽  
B. P. Christy ◽  
...  

The effects of various grazing management systems on sown, naturalised, and native pastures were studied at 6 different locations in the temperate high rainfall zone (HRZ, >600 mm rainfall/year) of southern Australia, as part of the Sustainable Grazing Systems (SGS) Program. The treatments examined had different pasture species and fertiliser management, with grazing method ranging from set stocking (continuous grazing) to rotation with rests based on pre- and post-grazing herbage mass or season and plant phenology. Sites were located at: Albany, Western Australia; Manilla, Barraba, Nundle, New South Wales; (grazed by wethers); and Carcoar, New South Wales; Maindample, Ruffy, north-east Victoria; Vasey, western Victoria; (grazed by ewes and lambs).Grazing method significantly (P<0.001) influenced stocking rate (expressed as dry sheep equivalents (DSE)/ha), but effects were not consistent across sites. At Vasey the stocking rate of the rotation treatments ranged from 5 to 23% higher than the set stocked treatments depending upon year. For all sites, significant factors (P<0.001) affecting stocking rate were soil Olsen P, soil pH, grazing management (resting), legume percent, and an index of growing season effectiveness. Although total annual rainfall had a significant effect (P<0.002) in an initial analysis, its influence became non-significant (P>0.05), when a growing season index (P<0.001) was used. Non-significant (P>0.05) factors included solar radiation, annual average temperature, fertiliser applied in the current year, and average annual perennial and broadleaf percent composition. The implications of these data for productivity and sustainability (as assessed by perenniality and water use) were encouraging. Generally, there were positive relationships between increased stocking rate and the probability of achieving a zero mm soil water surplus in winter, and between increased productivity and the proportion of perennial grass species where extremes of treatments were compared at each site. The results indicate that stocking rate can be increased without jeopardising sustainability, that grazing management can bring about more sustainable pastures, that there is scope to increase productivity particularly through increasing soil fertility, and growing season length can be used to predict potential carrying capacity. These are positive outcomes that graziers in the HRZ of southern Australia can use to enhance productivity (thus profitability) and sustainability.


1989 ◽  
Vol 112 (1) ◽  
pp. 115-122 ◽  
Author(s):  
J. R. B. Tallowin ◽  
J. H. H. Williams ◽  
F. W. Kirkham

SummaryThe effects of different severities of continuous grazing imposed during the spring, followed by a uniform continuous grazing management from mid-summer onwards, were examined in relation to changes in tiller demography and leaf growth of perennial ryegrass (Lolium perenne). Two grazing severities were imposed, based upon maintaining a constant sward height of either 35 mm (severe) or 75 mm (lenient). From 1 June onwards, a uniform grazing pressure with a sward height of 60 mm was imposed.Differences in the age class structure of the tiller populations developed during the spring between the two grazing treatments, principally through the suppression of daughter tiller development under the more lenient grazing. The demographic differences between the treatments were further increased during the remainder of the grazing season, under the common grazing management, largely because of the greater production of secondary daughter tillers in the sward which had been leniently grazed. The demographic differences between the swards had little effect on net pasture production during the treatment season, with lamina growth rates being virtually unaffected across a wide range of steadystate, continuous-grazing pressures. However, longer-term effects on pasture development, due to the demographic differences between the swards, did appear in the following season; the more severe grazing pressure treatment resulted in earlier inflorescence development in the subsequent season.


2001 ◽  
Vol 41 (1) ◽  
pp. 117 ◽  
Author(s):  
R. A. Waller ◽  
P. W. G. Sale

Loss of perennial ryegrass (Lolium perenne L.) from the pasture within several years of sowing is a common problem in the higher rainfall (550–750 mm annual rainfall), summer-dry regions of south-eastern Australia. This pasture grass came to Australia from northern Europe, where it mostly grows from spring to autumn under mild climatic conditions. In contrast, the summers are generally much drier and hotter in this region of south-eastern Australia. This ‘mismatch’ between genotype and environment may be the fundamental reason for the poor persistence. There is hope that the recently released cultivars, Fitzroy and Avalon, selected and developed from naturalised ryegrass pastures in south-eastern Australia for improved winter growth and persistence will improve the performance of perennial ryegrass in the region. Soon-to-be released cultivars, developed from Mediterranean germplasm, may also bridge the climatic gap between where perennial ryegrass originated and where it is grown in south-eastern Australia. Other factors that influence perennial ryegrass persistence and productivity can be managed to some extent by the landholder. Nutrient status of the soil is important since perennial ryegrass performance improves relative to many other pasture species with increasing nitrogen and phosphorus supply. It appears that high soil exchangeable aluminium levels are also reducing ryegrass performance in parts of the region. The use of lime may resolve problems with high aluminium levels. Weeds that compete with perennial ryegrass become prevalent where bare patches occur in the pasture; they have the opportunity to invade pastures at the opening rains each year. Maintaining some herbage cover over summer and autumn should reduce weed establishment. Diseases of ryegrass are best managed by using resistant cultivars. Insect pests may be best managed by understanding and monitoring their biology to ensure timely application of pesticides and by manipulating herbage mass to alter feed sources and habitat. Grazing management has potential to improve perennial ryegrass performance as frequency and intensity of defoliation affect dry matter production and have been linked to ryegrass persistence, particularly under moisture deficit and high temperature stress. There is some disagreement as to the merit of rotational stocking with sheep, since the results of grazing experiments vary markedly depending on the rotational strategy used, climate, timing of the opening rains, stock class and supplementary feeding policy. We conclude that flexibility of grazing management strategies is important. These strategies should be able to be varied during the year depending on climatic conditions, herbage mass, and plant physiology and stock requirements. Two grazing strategies that show potential are a short rest from grazing the pasture at the opening rains until the pasture has gained some leaf area, in years when the opening rains are late. The second strategy is to allow ryegrass to flower late in the season, preventing new vegetative growth, and perhaps allowing for tiller buds to be preserved in a dormant state over the summer. An extension of this strategy would be to delay grazing until after the ryegrass seed heads have matured and seed has shed from the inflorescences. This has the potential to increase ryegrass density in the following growing season from seedling recruitment. A number of research opportunities have been identified from this review for improving ryegrass persistence. One area would be to investigate the potential for using grazing management to allow late development of ryegrass seed heads to preserve tiller buds in a dormant state over the summer. Another option is to investigate the potential, and subsequently develop grazing procedures, to allow seed maturation and recruitment of ryegrass seedlings after the autumn rains.


2000 ◽  
Vol 40 (2) ◽  
pp. 125 ◽  
Author(s):  
D. R. Kemp ◽  
P. M. Dowling

Naturalised pastures across the higher rainfall (>600 mm) perennial pasture zone of south-eastern Australia are less productive than they were, while sown pastures fail to maintain their initial levels of production. Several factors have contributed to this, including lack of knowledge of suitable grazing practices, weed invasion, increasing acid soils, rising water tables and poor management practices during droughts. A key issue in each case is the decline in perennial grass species which is both a cause and effect of the decline in productivity and sustainability of these ecosystems. This paper introduces a volume devoted to the largest collaborative study done to evaluate tactics for better grazing management and to improve the sustainability of perennial pasture ecosystems. Grazing practices to manage the composition of pastures have been largely neglected in pasture research, but are an important first step in improving pasture sustainability. This paper also outlines a new, open communal grazing experimental design which was developed and used across 24 sites on farms in New South Wales, Victoria, Tasmania and South Australia, to evaluate tactics for grazing management. The general aim across these experiments was to maintain (if adequate) or enhance (if degraded), the proportion of desirable perennial grasses in the sward to achieve more sustainable pastures. The results will provide the basis for building more sustainable grazing systems.


2002 ◽  
Vol 24 (2) ◽  
pp. 313 ◽  
Author(s):  
B. S. Grace ◽  
R. D. B. Whalley ◽  
A. W. Sheppard ◽  
B. M. Sindel

Saffron thistle (Carthamus lanatus L.) is a widespread and troublesome weed in grazing land throughout much of eastern Australia. Conventional control measures are not feasible in much of this area, so the prospect for controlling saffron thistle through strategic grazing with sheep was investigated. By sowing seeds, and counting seedlings that emerged, we found that as little as 2 cm of pasture cover reduced the number of seedlings that emerged by 96% compared with bare ground. Grazing experiments showed that the survival of saffron thistle rosettes was reduced by 12% in plots that were strategically rested for one month in autumn, followed by grazing at high stocking rates. Grazing in late spring, when plants produced flowering stems, killed 20% of thistles before they set seed. A comparison of thistle density and pasture composition on farms that practice strategic grazing with neighbouring farms that used continuous grazing supported these results. Pastures had few thistles when perennial grasses accounted for over 35% of groundcover. We conclude that grazing management can help control saffron thistle.


1986 ◽  
Vol 106 (1) ◽  
pp. 129-139 ◽  
Author(s):  
J. R. B. Tallowin ◽  
J. H. H. Williams ◽  
R. V. Large

SUMMARYThe effects of different severities of continuous grazing imposed during the spring followed by a uniform continuous grazing management from midsummer onwards were examined in relation to sward morphology, herbage quality and the performance of young beef cattle in the years 1980 and 1981. The three grazing severities were based upon maintaining a constant sward height, namely 35 mm (severe), 50 mm (moderate) and 75 mm (lenient). From 1 June onwards a uniform grazing severity with a sward height of 60 mm was imposed. The grazing pressure on each paddock was adjusted by either adding or removing of cattle to maintain the target sward heights. When the grazing pressure was changed in June, the digestibility of both the herbage components on offer and the total herbage selected by the cattle was higher in the swards that had been severely grazed than that in the leniently grazed treatments. This appeared to be due to the combination of a higher proportion of younger, more digestible leaf laminae, less dead and less maturing true stem being present in the swards that had previously been severely grazed. Over the season as a whole, there was no significant difference between the grazing treatments in terms of individual animal performance or overall animal live-weight production per hectare.


2005 ◽  
Vol 45 (4) ◽  
pp. 369 ◽  
Author(s):  
P. M. Dowling ◽  
D. R. Kemp ◽  
P. D. Ball ◽  
C. M. Langford ◽  
D. L. Michalk ◽  
...  

Declining grassland productivity is a major concern in southern temperate Australia. Continuous grazing is thought to be a primary contributor to this decline, which is associated with the loss of perennial grasses. Landholders are evaluating grazing management strategies that might curb the loss of perennials and increase long-term productivity. This study reports on a comparison between continuous grazing and time-control grazing with sheep and cattle using a paired-paddock design at 5 locations in south-eastern Australia (lat. 30–42°S) over 6 years (1994–99). Pasture herbage mass, grassland species composition and basal cover of perennial grasses were assessed at 6-monthly intervals. Species abundance data were analysed by ANOVA, ordination (multi-dimensional scaling) and splining procedures to assess comparative trends between the 2 management treatments at each site. Species were categorised into major functional groups for analysis. Over all 5 sites there were few consistent differences between management treatments (continuous grazing v. time-control grazing). Basal cover was greater on the time-control grazing management compared with continuous grazing for most of the experimental period at 3 sites, but the initial values were also greater, resulting in a non-significant management × time interaction. Based on this study, we conclude that there was no apparent medium-term benefit of a multi-paddock rotational (time-control grazing) grazing system over continuous grazing for encouraging and maintaining a favourable botanical composition. The benefits for land managers from employing systems such as time-control grazing may accrue through other mechanisms. The study also highlights some of the difficulties with conducting on-farm paired-paddock research.


Soil Research ◽  
2013 ◽  
Vol 51 (8) ◽  
pp. 695 ◽  
Author(s):  
D. E. Allen ◽  
M. J. Pringle ◽  
S. Bray ◽  
T. J. Hall ◽  
P. O. O'Reagain ◽  
...  

This study aimed to unravel the effects of climate, topography, soil, and grazing management on soil organic carbon (SOC) stocks in the grazing lands of north-eastern Australia. We sampled for SOC stocks at 98 sites from 18 grazing properties across Queensland, Australia. These samples covered four nominal grazing management classes (Continuous, Rotational, Cell, and Exclosure), eight broad soil types, and a strong tropical to subtropical climatic gradient. Temperature and vapour-pressure deficit explained >80% of the variability of SOC stocks at cumulative equivalent mineral masses nominally representing 0–0.1 and 0–0.3 m depths. Once detrended of climatic effects, SOC stocks were strongly influenced by total standing dry matter, soil type, and the dominant grass species. At 0–0.3 m depth only, there was a weak negative association between stocking rate and climate-detrended SOC stocks, and Cell grazing was associated with smaller SOC stocks than Continuous grazing and Exclosure. In future, collection of quantitative information on stocking intensity, frequency, and duration may help to improve understanding of the effect of grazing management on SOC stocks. Further exploration of the links between grazing management and above- and below-ground biomass, perhaps inferred through remote sensing and/or simulation modelling, may assist large-area mapping of SOC stocks in northern Australia.


Sign in / Sign up

Export Citation Format

Share Document