scholarly journals The Mode of Grass Supply to Dairy Cows Impacts on Fatty Acid and Antioxidant Profile of Milk

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1256
Author(s):  
Senén De La Torre-Santos ◽  
Luis J. Royo ◽  
Adela Martínez-Fernández ◽  
Cristina Chocarro ◽  
Fernando Vicente

The optimization of milk production includes a rational use of forages, respect for the environment and offers the best quality to consumers. Milk production based on grass and forages produces healthier milk and it is widely spread throughout the Atlantic arc to maximize milk yield per hectare. However, the mode of offering the grass can have a major influence on milk composition. The aim of this study was to evaluate the effect of grass supply mode (grazing, zero-grazing or ensiling) on dairy cows’ performance, with particular reference to fatty acids and fat-soluble antioxidants concentration. A three by three Latin square experiment was performed with 18 dairy cows. Experimental treatments consisted of exclusive feeding with grass silage and zero-grazing, both offered ad libitum indoors, or grazing for 24 h. The results showed that grazing cows had a higher dry matter intake and greater milk yield than cows feeding on grass silage and zero-grazing, as well as higher concentrations of protein, lactose, nonfat-solids and urea in milk than housed cows. Milk fat from grazing cows had a higher proportion of unsaturated fatty acids than from cows feeding on grass silage and zero-grazing, with significant differences in the proportion of vaccenic and rumenic acids. The 18:1 trans-11 to 18:1 trans-10 ratio is proposed as biomarker to identify the milk produced from the management system of grazing cattle. Milk from grazing cows had a greater proportion of lutein than cows eating grass silage, with the zero-grazing system having intermediate values. In conclusion, the mode of grass supply affects fatty acid and antioxidant profiles of milk.

2013 ◽  
Vol 14 (2) ◽  
pp. 322-335
Author(s):  
Jose Esler de Freitas Júnior ◽  
Francisco Palma Rennó ◽  
Jefferson Rodrigues Gandra ◽  
Luciana Navajás Rennó ◽  
Gustavo Henrique Rodrigues ◽  
...  

The objective was to evaluate the effect of unsaturated fatty acid sources supplementation on nutrients balances and milk fatty acid profile of mid lactation dairy cows. Twelve Brazilian Holstein cows in the mid lactation (mean of 128 days) and (580 ± 20kg of weight; mean ± SD) with milk yield of 25kg/d were assigned randomly into three 4 x 4 Latin square, fed the following diets: control (C); refined soybean oil; (SO); whole soybean raw (WS) and; calcium salts of unsaturated fatty acids (CSFA). Milk yield was 26.6; 26.4; 24.1 and 25.7 to the diets CO, SO, WS and CSFA respectively. Cows fed the WS treatment produced less milk (1.95kg/d of milk), fat and lactose than did cows fed the SO and CSFA. Cows fed the CSFA treatment showed less blood, urine (g/d) concentrations of N more energetic efficiency and intake of energy than did cows fed the SO treatment. Cows fed the unsaturated fatty acids sources showed more C18:2 cis-9, trans-11 CLA and trans-C18:1 FA concentration in milk than did cows fed the CO treatment. Diets with whole soybeans and soybeans oil provide more efficient digestive processes, and increase milk composition of unsaturated fatty acids.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


1997 ◽  
Vol 6 (5-6) ◽  
pp. 349-362 ◽  
Author(s):  
Hannele Khalili ◽  
Tuomo Varvikko ◽  
Vesa Toivonen ◽  
Kari Hissa ◽  
Marjatta Suvitie

The addition of glycerol or free fatty acids either alone or in combination to concentrate was studied for the effects on feed intake, milk production, rumen fermentation, blood metabolites and diet digestibility in dairy cows given grass silage ad libitum. The study was conducted on 12 mid-lactating cows, four of them ruminally cannulated. Barley-based concentrate (control diet, C) was given 7 kg/d as fed. In the other three diets, 36 g/kg of barley was replaced by glycerol (G) or a mixture of free fatty acids (FA) or by a combination of the two, making a total of 72 g/kg (GFA). The experimental design consisted of balanced 4 x 4 Latin squares with a 2 x 2 factorial arrangement of diets: the effects of G, FA and G*FA interaction. The FA diets significantly decreased silage intake, increased milk yield, decreased milk protein content, increased the concentrations of C18:0, C18:1, and C20:1 and decreased those of C8-16, and C18:3 fatty acids in milk fat. The FA diets also increased the concentration of nonesterified fatty acids in plasma, and decreased the digestibility of organic matter and neutral detergent fibre but increased that of fat. Glycerol decreased the molar proportion of acetate and increased the molar proportions of propionate and butyrate in the rumen, but the addition of glycerol did not have any effect on silage intake, milk yield or milk composition. Milk yield was highest when glycerol and free fatty acids were given together, showing a positive interaction.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Rodrigo N S Torres ◽  
João P A Bertoco ◽  
Maria C G de Arruda ◽  
Julia L Rodrigues ◽  
Larissa M Coelho ◽  
...  

Abstract The use of glycerin in diets for dairy cows initially emerged as an alternative for the prevention and control of ketosis. However, despite some controversy, there are still several studies associating glycerin with increases in daily milk yield, with possible changes in its constituents. Therefore, the objective of this study was to evaluate, using a meta-analysis approach, the effect of glycerin inclusion in dairy cow diets on milk fatty acid. Twenty-two peer-reviewed publications with 66 treatment means were included in data set. The effect of glycerin inclusion in diet (treatment) were evaluated using random-effect models to examine the weighted mean differences (WMD) between a control diet (without glycerin in the diet) and the treatment diet. Heterogeneity was explored by meta-regression and subgroup analysis performed for: genetic type; days in milk; experimental period; glycerin in diet; glycerin type and concentrate in diet. Inclusion of glycerin in the diet increased the digestibility of dry matter and protein, as well as ruminal propionate. It did not affect dry matter intake (P = 0.351) and milk yield (P = 0.730). The effect of glycerin inclusion on the milk fat yield is dependent on the genetic group, in which Holstein (WMD = −0.04 kg/d; P = 0.010) and Holstein-crossbreed (WMD = −0.10 kg/d; P < 0.0001) cows produced less fat in milk compared to Jersey cows, when glycerin was included in the diets. Glycine inclusions of up to 100 g/kg in the diet of dairy cows did not negatively affect milk production and composition. However, inclusions above 150 g/kg of glycerin in the diet reduced the concentration of fat, and of unsaturated, monounsaturated, polyunsaturated fatty acids and conjugated linoleic acid (CLA C18: 2 cis-9 and trans-11) in milk. The results reported in our meta-analysis does not demonstrate the effectiveness of glycerin in improving the composition of milk and a group of fatty acids of importance for human health such as C18: 2 cis-9, trans-11 CLA.


2017 ◽  
Vol 84 (4) ◽  
pp. 453-463 ◽  
Author(s):  
Sabine Ferneborg ◽  
Lucia Kovac ◽  
Kevin J Shingfield ◽  
Sigrid Agenäs

It has been well established that milk yield is affected both by milking frequency and due to the removal of residual milk, but the influence of a combination of these factors is unclear. In this study, four mid-lactation cows were used in a 4 × 4 Latin square design to test the hypothesis that the effects of more frequent milking and residual milk removal on milk yield and composition are additive and alter milk fatty acid composition. Treatments comprised two or four times daily milking in combination with (or without) residual milk removal over a 96 h interval preceded by a 2 d pretreatment period and followed by a 8 d washout in each 14 d experimental period. Milk was sampled at each milking for the analysis of gross composition and SCC. Samples of available and residual milk collected on the last milking during each treatment period were collected and submitted for fatty acid composition analysis. Increases in milking frequency and residual milk removal alone or in combination had no effect on milk yield or on the secretion of lactose and protein in milk. However, residual milk removal during more frequent milking increased milk fat yield. Milking treatments had no major influence on the fatty acid composition of available milk, but resulted in rather small changes in the relative abundance of specific fatty acids, with no evidence that the additive effects of treatments were due to higher utilisation of preformed fatty acids relative to fatty acid synthesis de novo. For all treatments, fat composition of available and residual milk was rather similar indicating a highly uniform fatty acid composition of milk fat within the mammary gland.


1999 ◽  
Vol 66 (4) ◽  
pp. 475-487 ◽  
Author(s):  
ZYGMUNT M. KOWALSKI ◽  
PAWEŁ M. PISULEWSKI ◽  
MAURO SPANGHERO

The objective of this study was to determine the effects of supplementing the diets of dairy cows with Ca soaps of rapeseed fatty acids (CSRFA) and rumen-protected (RP) methionine on their milk yield and composition, including milk protein fractions and fatty acids. Twelve Polish Red Lowland cows were used in a complete balanced two period changeover experiment. The four treatment diets were a control consisting of a total mixed ration of grass silage and concentrates, and the total mixed ration supplemented with RP methionine, CSRFA or RP methionine plus CSRFA. Dry matter intake was not affected by diet. Milk yield increased when cows were given the diet with CSRFA, but supplementation of diets with RP methionine did not affect milk yield. Milk protein content, but not milk protein yield, decreased when CSRFA was given. The addition of RP methionine to the control diet and the CSRFA diet produced similar increases in the milk protein content. Supplementation of the diet with CSRFA significantly changed the milk fatty acid profile: the proportions of 10:0, 12:0, 14:0, 15:0 and 16:0 in milk fat decreased, but those of 18:0 and cis-18:1 increased. We conclude that CSRFA can be used in practical dairy diets to increase milk yield and manipulate its fatty acid composition.


2019 ◽  
Vol 40 (4) ◽  
pp. 1663
Author(s):  
Shirley Motta de Souza ◽  
Fernando César Ferraz Lopes ◽  
Sebastião de Campos Valadares Filho ◽  
Marco Antônio Sundfeld da Gama ◽  
Luciana Navajas Rennó ◽  
...  

Sugarcane is a strategic roughage source for milk production in the tropics, and its supplementation with plant oils offers great potential for obtaining milk enriched with beneficial fatty acids, such as oleic (cis-9 C18:1), vaccenic (trans-11 C18:1), and rumenic (cis-9, trans-11 CLA) acids. The aim of this study was to evaluate the milk fatty acid composition of cows fed 60% chopped sugarcane-based diets containing citrus pulp and 0.0% (control), 1.5%, 3.0% and 4.5% sunflower oil on a dry matter basis. Twelve multiparous Holstein x Gyr dairy cows with an average milk production of 17±5 kg day-1 and 96±25 days in milk were allocated in a triplicate 4 x 4 Latin square design. There was no effect of dietary treatment on milk production, but sunflower oil supplementation linearly reduced the milk fat content and yield. The milk fat contents of lauric (C12:0), myristic (C14:0), and palmitic (C16:0) fatty acids were linearly reduced with increasing sunflower oil levels. There was a quadratic effect on the milk fat oleic, vaccenic, and rumenic acid contents, while the concentrations of elaidic acid (trans-9 C18:1), trans-10 C18:1 and trans-10, cis-12 CLA linearly increased in response to sunflower oil inclusion. Diet supplementation with sunflower oil linearly reduced both the atherogenicity and thrombogenicity indices and linearly increased the ratio between hypo- and hypercholesterolemic fatty acids in milk fat. The inclusion of up to 4.5% sunflower oil in 60% chopped sugarcane-based diets improved the nutritional quality of milk fat from Holstein x Gyr dairy cows as a result of the increased content of oleic, rumenic and vaccenic acids, which are beneficial to human health, and the concomitant reduction of hypercholesterolemic lauric, myristic and palmitic acids. However, there was an increase in the milk content of trans-10 C18:1 and elaidic acid, which are associated with deleterious effects on cardiovascular health.


Dairy ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 716-728
Author(s):  
Senén De La Torre-Santos ◽  
Luis J. Royo ◽  
Adela Martínez-Fernández ◽  
Mario Menéndez-Miranda ◽  
Rocío Rosa-García ◽  
...  

Dairy systems based on grass and forages are widely spread throughout the European Atlantic Arc and they have an influence on milk quality. Likewise, legumes are a key element in the farms to improve cows’ diet and farm feed self-sufficiency. The aim of this study was to evaluate the effect of the legumes in the diet and the feeding system (pasture-based vs. confined) on milk production and composition. An assay was performed with 18 Friesian cows randomized into two management groups (grazing or confined). Three total mixed rations based on Italian ryegrass, faba bean or field pea silages were offered ad libitum for nine continuously housed cows or during two hours after each milking for another nine grazing cows. Regardless of type of silage, grazing cows had higher dry matter intake and milk production than confined cows. Likewise, grazing cows produced milk with a lower concentration of protein and urea than confined cows. The dairy cows fed total mixed rations based on both legume silages had a milk fat with a higher proportion of unsaturated fatty acids, especially with the inclusion of faba bean silage in the diet. The results demonstrate that the profile of fatty acids and antioxidants is related to the feeding system in dairy cows. Grazing directly influenced the composition of milk, decreasing the proportion of saturated fatty acids and increasing the content of unsaturated fatty acids, as CLA, and the antioxidants, as lutein and β-cryptoxanthin.


2006 ◽  
Vol 86 (4) ◽  
pp. 547-556 ◽  
Author(s):  
R. H. Zhang ◽  
A. F. Mustafa ◽  
X. Zhao

Sixteen lactating Dorset ewes were used in a completely randomized design to determine the effects of oilseed supplementation on milk yield and composition, blood metabolites, cheese yield and composition and fatty acid profile of milk and cheese. Four iso-nitrogenous diets were formulated: a control diet (CT) with no oilseed supplementation, a flaxseed supplemented diet (FS), a sunflower seed supplemented diet (SF), and a canola seed supplemented diet (CS). Oilseed-supplemented diets were formulated to contain 7% fatty acids. Feeding oilseeds had no effect on dry matter intake. Milk yield was similar for ewes fed CT, FS and SF and was higher (P < 0.05) than that of ewes fed CS. Ewes fed oilseed-supplemented diets produced milk with higher (P < 0.05) protein and total solid percentages than those fed CT. However, milk fat percentage was only higher (P < 0.05) in the milk of ewes fed FS and SF relative to those fed CT. Actual cheese yield was higher (P < 0.05) from milk of ewes fed oilseed-supplemented diets relative to those fed CT. However, cheese composition was not affected by dietary treatments. Plasma concentrations of fatty acids and cholesterol were increased (P < 0.05) while plasma concentration of β-hydroxybutyrate (βHBA) was decreased (P < 0.05) by oilseed supplementation. However, plasma concentrations of glucose and mammary extraction rate of plasma metabolites were not influenced by oilseed feeding. Oilseed supplementation increased (P < 0.05) concentrations of unsaturated fatty acids in milk fat. The order of increase was SF > FS > CS. Feeding SF, FS and CS increased (P < 0.05) conjugated linoleic acid (CLA) concentration in milk by 83.5, 39.2 and 16.5%, respectively. Concentration of linolenic acid in milk was only increased (P < 0.05) by feeding FS. Changes in milk fatty acid profiles were reflected in the cheese. Key words: Ewes, oilseeds, milk, cheese, fatty acids


Author(s):  
C. A. Moran ◽  
M. Morlacchini ◽  
G. Fusconi

SummaryThe objective of this study was to evaluate the effect of the dietary inclusion of 6 g/kg dry matter intake of an unextracted Aurantiochytrium limacinum algae (AURA) in mid-lactation Italian Friesian cows under commercial conditions on milk yield, milk composition and docosahexaenoic acid (DHA) content. Cows were allocated to two groups (n = 18; 108.2 ± 66.1 and 104.4 ± 54.6 days in milk, control and treated groups, respectively). Feeding AURA for 84 d had no effect on dry matter intake, body condition score or weight gain, but did improve milk yield by 1.9 kg/cow/d (+5.4%; P < 0.1) over the course of the experiment. Milk fat concentration declined by 12% (P < 0.0001) without any significant change in 4% fat corrected milk, protein or lactose. Supplementing AURA for 12 weeks substantially altered the fatty acid profile of milk compared with milk from CON-fed cows such that the proportion of unsaturated fatty acids increased, omega-3 fatty acid content increased by 73.1% (P < 0.0001) and was accompanied by a favourable increase in the omega-3:6 fatty acid ratio by 75.0% (P < 0.0001). The AURA supplement, during day 7–84, increased the DHA concentration to 0.37 g /100 g milk total fatty acids (P < 0.0001) with a mean transfer efficiency of 18.1% from feed to milk. Together these results indicated that supplementing a dairy cow diet with DHA-rich microalgae is a feasible and efficient means for creating DHA-enriched milk for human consumption.


Sign in / Sign up

Export Citation Format

Share Document