Characteristics of CO2 exchange between peach stems and the atmosphere

2005 ◽  
Vol 32 (9) ◽  
pp. 787 ◽  
Author(s):  
Giorgio A. Alessio ◽  
Fabrizio Pietrini ◽  
Federico Brilli ◽  
Francesco Loreto

Gas exchange by stems is dominated by respiratory CO2 emission, but photosynthetic CO2 uptake might also occur in stem bark. We show that light-dependent CO2 uptake was present and often exceeded CO2 release by respiration in illuminated current-year peach (Prunus persica L.) stems. Respiration of peach stems, as detected by 12CO2 release into air in which the natural concentration of 12CO2 was replaced with 13CO2, was lower in the light than in the dark, but this accounted for only a fraction of the observed total CO2 uptake by illuminated stems. Stem photosynthesis was saturated at low light and was negatively affected by elevated assay temperatures (30°C), especially when combined with light intensities above saturation. An inefficient mechanism of heat dissipation by transpiration in stomata-free stems might help explain this effect. Photosynthesis was rapidly stimulated and the electron transport rate was reduced when photorespiration was suppressed by exposure to low (2 kPa) oxygen. The time-course of these changes was closely associated with a transient burst of CO2 uptake concurrent with a reduced inhibition of fluorescence yield. Photosynthesis was also stimulated by exposure to elevated (twice ambient) CO2 concentration. These combined measurements of gas exchange and fluorescence suggested that (a) photorespiration may also be active in the bark of peach stems, (b) O2 and CO2 concentrations in the bark of peach stems may be similar to ambient concentrations, (c) a large amount of electron transport unrelated to photosynthesis and photorespiration may also be present in peach stems, and (d) stem photosynthesis may be enhanced under future atmospheric conditions.


1979 ◽  
Vol 6 (4) ◽  
pp. 499 ◽  
Author(s):  
JA Browse ◽  
FI Dromgoole ◽  
JMA Brown

When free CO2 alone was present in the ambient medium, photosynthesis by Egeria densa Planch displayed an apparent Km of 77 μM. A light- and CO2-saturated rate of 100 μmol C (mg Chl)-1 h-1 was achieved only in 400 μM CO2(aq) [c. 1% CO2(g)]. The CO2 response data and other considerations suggest that, although the carboxylation and mesophyll resistances (3800 s m-1 and <9000 s m-1 respectively) are considerably higher than in aerial plant leaves, the boundary layer is the highest component (> 27 000 s m-1) of the total resistance. An increase in the total resistance of 7200 s m-1 between 0.02 and 0.21 atm O2 (2 and 21 kPa O2) is attributed to photorespiration. Closed and open circuit gas exchange experiments demonstrated that bicarbonate is taken up by the plant cells and does not act merely as a reservoir of inorganic carbon for production of CO2 at the plasmalemma. Bicarbonate stimulated photosynthesis, even when the free CO2 concentration was below the CO2 compensation point. The total resistance to bicarbonate uptake appears to be 8-12 times that for CO2 uptake presumably due to the processes of active uptake, transport and/or conversion to CO2 involved in bicarbonate but not CO2 assimilation.



Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 663
Author(s):  
James Bunce

Attempts to identify crop genetic material with larger growth stimulation at projected elevated atmospheric CO2 concentrations are becoming more common. The probability of reductions in photosynthesis and yield caused by short-term variation in CO2 concentration within elevated CO2 treatments in the free-air CO2 enrichment plots raises the question of whether similar effects occur in glasshouse or indoor chamber experiments. These experiments were designed to test whether even the normal, modest, cyclic variation in CO2 concentration typical of indoor exposure systems have persistent impacts on photosynthesis and growth, and to explore mechanisms underlying the responses observed. Wheat, cotton, soybeans, and rice were grown from seed in indoor chambers at a mean CO2 concentration of 560 μmol mol−1, with “triangular” cyclic variation with standard deviations of either 4.5 or 18.0 μmol mol−1 measured with 0.1 s sampling periods with an open path analyzer. Photosynthesis, stomatal conductance, and above ground biomass at 20 to 23 days were reduced in all four species by the larger variation in CO2 concentration. Tests of rates of stomatal opening and closing with step changes in light and CO2, and tests of responses to square-wave cycling of CO2 were also conducted on individual leaves of these and three other species, using a leaf gas exchange system. Reduced stomatal conductance due to larger amplitude cycling of CO2 during growth occurred even in soybeans and rice, which had equal rates of opening and closing in response to step changes in CO2. The gas exchange results further indicated that reduced mean stomatal conductance was not the only cause of reduced photosynthesis in variable CO2 conditions.



1975 ◽  
Vol 38 (4) ◽  
pp. 710-718 ◽  
Author(s):  
R. E. Forster ◽  
E. D. Crandall

A stopped-flow rapid-reaction apparatus was used to follow the time course of extracellular pH in a human red cell suspension following a sudden increase in PCO2. The extracellular pH change was slow (t1/2 similar to 3.5 s) considering the presence of carbonic anhydrase in the cells. When carbonic anhydrase was added to the extracellular fluid, the half-time was reduced to less than 20 ms. The explanation for these phenomena is that the equilibration of H+ across the red cell membrane is rate-limited by the uncatalyzed reaction CO2 plus H2O formed from H2CO3 outside the cells. A theoretical model was developed which successfully reproduced the experimental results. When the model was used to simulate CO2 exchange in vivo, it was determined that blood PCO2 and pH require long times (greater than 50 s) to approach equilibrium between cells and plasma after leaving an exchange capillary. We conclude that cell-plasma equilibrium may never be reached in vivo, and that in vitro measurements of these quantities may not represent their true values at the site of sampling.



1981 ◽  
Vol 51 (5) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. W. Shepard ◽  
V. D. Minh ◽  
G. F. Dolan

Gas exchange was studied under conditions of zero perfusion both in situ and in vitro. Six dogs, anesthetized with pentobarbital sodium, underwent surgical interruption of both pulmonary and bronchial circulations to the left lung. Despite the absence of perfusion, O2 uptake for the left lung ranged from 0.76 to 0.98 ml/min, whereas CO2 elimination greatly exceeded O2 uptake ranging from 1.68 to 4.34 ml/min. In addition, CO2 output was observed to vary directly with the level of minute ventilation (VE) and inversely with end-tidal CO2 concentration. To investigate the mechanisms responsible for these findings we studied 20 excised, ventilated, but nonperfused dog lungs to evaluate the relative roles of tissue metabolism and transpleural diffusion to gas exchange. The results obtained with these excised lungs under conditions of varying VE and extrapleural gas concentrations indicate that the high respiratory exchange ratios observed in situ can be explained by the greater rate with which CO2 diffuses through the pleura, and that reduced ventilation decreases total gas transfer by decreasing the transpleural partial pressure driving gradient. Our data further document that the concentration of CO2 in alveolar gas may differ significantly from that present in inspired gas under conditions of ventilation-perfusion ratio equal to infinity, and that tissue metabolism as well as transpleural diffusion contribute to gas exchange in nonperfused lung.



2020 ◽  
Vol 9 (5) ◽  
pp. e43952870
Author(s):  
Magnólia Martins Alves ◽  
Manoel Bandeira de Albuquerque ◽  
Renata Ranielly Pedroza Cruz ◽  
Mário Luiz Farias Cavalcanti

The availability of light is one of the factors that most limits the photosynthesis of juvenile trees in the understory of the forest. The study was carried out in the Mata do Pau-Ferro State Park, located in the city of Areia, PB. The objective of this study was to evaluate how gas exchanges occur in individuals of Psychotria colorata (Willd. Ex Roem & Schult.), Senna georgica Irwin & Barneby, Himatanthus phagedaenicus (Mart.) Woodson, Solanum swartzianum Roem. & Schult, Psychotria carthagenensis Jacq.e Psychotria hoffmannseggiana (Willd. ex Schult.) in the understory of a remnant of Mata Atlântica. The rate of photosynthesis (A), transpiration (E), stomatal conductance (Gs), internal CO2 concentration (Ci) leaf temperature-air temperature (°C), and internal carbon (Ci), instantaneous efficiency of water use (EUA) (A/E), Intrinsic efficiency of water use (EiUC) (A/Gs) and the intrinsic efficiency of carboxylation (ratio A/Ci). The rates of maximum photosynthesis (A), photosynthesis (E) and stomatal conductance (Gs) were shown to be influenced by the time of day, as there was no interference of external factors in the diurnal patterns of gas exchange, variations are due to endogenous factors, probably due to the circadian rhythm. The parameter of the gas exchange of sub-forest species responds differently, in the small variations in the luminosity levels of the forest understory



Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1031
Author(s):  
Marcin Dębowski ◽  
Mirosław Krzemieniewski ◽  
Marcin Zieliński ◽  
Joanna Kazimierowicz

Microalgae-mediated CO2 sequestration has been a subject of numerous research works and has become one of the most promising strategies to mitigate carbon dioxide emissions. However, feeding flue and exhaust gas into algae-based systems has been shown to destroy chloroplasts, as well as disrupt photosynthesis and other metabolic processes in microalgae, which directly limits CO2 uptake. CO2 biosequestration in existing photobioreactors (PBRs) is also limited by the low biomass concentration in the growth medium. Therefore, there is a real need to seek alternative solutions that would be competitive in terms of performance and cost-effectiveness. The present paper reports the results of experiments aimed to develop an innovative trickle bed reactor that uses immobilized algae to capture CO2 from flue and exhaust gas (IMC-CO2PBR). In the experiment, ambient air enriched with technical-grade CO2 to a CO2 concentration of 25% v/v was used. The microalgae immobilization technology employed in the experiment produced biomass yields approximating 100 g DM/dm3. A relationship was found between CO2 removal rates and gas volume flux: almost 40% of CO2 was removed at a feed of 25 dm3 of gas per hour, whereas in the 200 dm3/h group, the removal efficiency amounted to 5.9%. The work includes a determination of basic process parameters, presentation of a developed functional model and optimized lighting system, proposals for components to be used in the system, and recommendations for an automation and control system for a full-scale implementation.



2012 ◽  
Vol 9 (11) ◽  
pp. 15787-15821 ◽  
Author(s):  
A. F. Hofmann ◽  
E. T. Peltzer ◽  
P. G. Brewer

Abstract. Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc.) as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2-HCO3–-CO32– acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that, for the problem of gas exchange with the bulk ocean, the combination of an increasing T combined with declining O2 poses a greater challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.



2012 ◽  
Vol 9 (2) ◽  
pp. 1439-1482 ◽  
Author(s):  
D. Y. F. Lai ◽  
N. T. Roulet ◽  
E. R. Humphreys ◽  
T. R. Moore ◽  
M. Dalva

Abstract. Accurate quantification of soil-atmosphere gas exchange is essential for understanding the magnitude and controls of greenhouse gas emissions. We used an automatic closed dynamic chamber system to measure the fluxes of CO2 and CH4 for several years at the ombrotrophic Mer Bleue peatland near Ottawa, Canada and found that atmospheric turbulence and chamber deployment period had a considerable influence on the observed flux rates. With a short deployment period of 2.5 min, CH4 flux exhibited strong diel patterns and both CH4 and nighttime CO2 effluxes were highly and negatively correlated with friction velocity as were the CO2 concentration gradients in the top 20 cm of peat. This suggests winds were flushing the very porous and relatively dry near surface peat layers, altering the concentration gradient and resulting in a 9 to 57% underestimate of CH4 flux at any time of day and a 13 to 21% underestimate of nighttime CO2 fluxes in highly turbulent conditions. Conversely, there was evidence of an overestimation of ~100% of CH4 and nighttime CO2 effluxes in calm atmospheric conditions possibly due to enhanced near-surface gas concentration gradient by mixing of chamber headspace air by fans. These problems were resolved by extending the deployment period to 30 min. After 13 min of chamber closure, the flux rate of CH4 and nighttime CO2 became constant and were not affected by turbulence thereafter, yielding a reliable estimate of the net biological fluxes. The measurement biases we observed likely exist to some extent in all chamber flux measurements made on porous and aerated substrate, such as peatlands, organic soils in tundra and forests, and snow-covered surfaces, but would be difficult to detect unless high frequency, semi-continuous observations are made.



2020 ◽  
Vol 205 ◽  
pp. 06013
Author(s):  
Anil Yildiz ◽  
Ross A. Stirling

Space heating and cooling comprises a significant portion of the overall energy consumption. Ground heat exchangers (GHE), are a sustainable alternative to conventional, non-renewably powered heating and cooling systems. Space is a scarce resource in densely urbanised areas, allocating dedicated locations to build GHE systems can result in high initial capital costs and an inflexibility in retrofitting. An alternative solution is to utilise existing, multi-benefit and resilient Sustainable Drainage Systems (SuDS) in cities. An investigation into the feasibility of utilising SuDS as sites for potential GHEs requires an understanding of their thermal and hydrological behaviour and boundary conditions. This study utilises a heavily-instrumented, vegetated lysimeter setup, exposed to atmospheric conditions, to test a pilot-scale SuDS heat exchanger. Heat rejection into the substrate of a SuDS has been simulated with the application of heat via voltage-controlled heating cables at a depth of 850 mm for 72-hour durations (at three different power inputs) with 96-hours between each power input. These heat dissipation periods are reflected in measured soil temperature profiles. Volumetric water content, matric suction, soil temperature and heat flux are monitored at various locations in the lysimeter. A finite difference modelling scheme has been developed to simulate the variation in soil temperature due to heat rejection.



Sign in / Sign up

Export Citation Format

Share Document