scholarly journals Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew

2008 ◽  
Vol 35 (12) ◽  
pp. 1255 ◽  
Author(s):  
Angela Feechan ◽  
Angelica M. Jermakow ◽  
Laurent Torregrosa ◽  
Ralph Panstruga ◽  
Ian B. Dry

The European cultivated grapevine, Vitis vinifera L., is a host for the powdery mildew pathogen Erisyphe necator, which is the most economically important fungal disease of viticulture. MLO proteins mediate powdery mildew susceptibility in the model plant species Arabidopsis and the crop plants barley and tomato. Seven VvMLO cDNA sequences were isolated from grapevine and were subsequently identified as part of a 17 member VvMLO gene family within the V. vinifera genome. Phylogenetic analysis of the 17 VvMLO genes in the grape genome indicated that the proteins they encode fall into six distinct clades. The expression of representative VvMLOs from each clade were analysed in a range of grape tissues, as well as in response to a range of biotic and abiotic factors. The VvMLOs investigated have unique, but overlapping tissue expression patterns. Expression analysis of VvMLO genes following E. necator infection identified four upregulated VvMLOs which are orthologous to the Arabidopsis AtMLO2, AtMLO6 and AtMLO12 and tomato SlMLO1 genes required for powdery mildew susceptibility. This suggests a degree of functional redundancy between the proteins encoded by these genes in terms of susceptibility to powdery mildew, and, as such, represent potential targets for modification to generate powdery mildew resistant grapevines.

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 680 ◽  
Author(s):  
He ◽  
Liang ◽  
Lu ◽  
Wang ◽  
Liu ◽  
...  

Gibberellin (GAs) plays the important role in the regulation of grape developmental and growth processes. The bioinformatics analysis confirmed the differential expression of GA2, GA3, and GA20 gibberellin oxidase genes (VvGA2oxs, VvGA3oxs, and VvGA20oxs) in the grape genome, and laid a theoretical basis for exploring its role in grape. Based on the Arabidopsis GA2oxs, GA3oxs, and GA20oxs genes already reported, the VvGA2oxs, VvGA3oxs, and VvGA20oxs genes in the grape genome were identified using the BLAST software in the grape genome database. Bioinformatics analysis was performed using software such as DNAMAN v.5.0, Clustalx, MapGene2Chrom, MEME, GSDS v.2.0, ExPASy, DNAsp v.5.0, and MEGA v.7.0. Chip expression profiles were generated using grape Affymetrix GeneChip 16K and Grape eFP Browser gene chip data in PLEXdb. The expression of VvGA2oxs, VvGA3oxs, and VvGA20oxs gene families in stress was examined by qRT-PCR (Quantitative real-time-PCR). There are 24 GAoxs genes identified with the grape genome that can be classified into seven subgroups based on a phylogenetic tree, gene structures, and conserved Motifs in our research. The gene family has higher codon preference, while selectivity is negative selection of codon bias and selective stress was analyzed. The expression profiles indicated that the most of VvGAox genes were highly expressed under different time lengths of ABA (Abscisic Acid) treatment, NaCl, PEG and 5 °C. Tissue expression analysis showed that the expression levels of VvGA2oxs and VvGA20oxs in different tissues at different developmental stages of grapes were relatively higher than that of VvGA3oxs. Last but not least, qRT-PCR (Real-time fluorescent quantitative PCR) was used to determine the relative expression of the GAoxs gene family under the treatment of GA3 (gibberellin 3) and uniconazole, which can find that some VvGA2oxs was upregulated under GA3 treatment. Simultaneously, some VvGA3oxs and VvGA20oxs were upregulated under uniconazole treatment. In a nutshell, the GA2ox gene mainly functions to inactivate biologically active GAs, while GA20ox mainly degrades C20 gibberellins, and GA3ox is mainly composed of biologically active GAs. The comprehensive analysis of the three classes of VvGAoxs would provide a basis for understanding the evolution and function of the VvGAox gene family in a grape plant.


2019 ◽  
Author(s):  
Yong Zhou ◽  
Yuan Cheng ◽  
Chunpeng Wan ◽  
Youxin Yang ◽  
Jinyin Chen

The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors that play vital roles in many biological processes and response to stresses. In the present study, a total of 36 ClDof genes were identified in the watermelon genome, which were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the ClDof proteins could be divided into nine groups, and the members in a particular group had similar motif arrangement and exon-intron structure. We then analyzed the expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR, and the results showed that they have tissue-specific expression patterns. We also evaluated the expression levels of the nine selected ClDof genes under salt stress and ABA treatments using qRT-PCR, and they showed differential expression under these treatments, suggesting their important roles in stress response. Taken together, our results provide a basis for future research on the biological functions of Dof genes in watermelon.


2020 ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

Abstract Background: Multidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice.Results: In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. In addition, physical and chemical properties of the encoded proteins, subcellular localization, chromosome localization, stress-related cis-elements in abiotic stresses were determined, and a phylogenetic analysis and conserved motif analysis were performed. The rice MATE family can be divided into four subfamilies. It is speculated that members of the rice MATE family have many potential functions, such as the transport and accumulation of flavonoids and alkaloids, the extrusion of plant or exogenous compounds, the regulation of disease resistance and the response to abiotic stress, based on the proteins and cis-acting elements with known functions in the same subfamily. Analysis of gene expression showed that most of the genes were constitutively expressed. Furthermore, eight MATE genes were chosen for qRT-PCR-based analysis and showed differential expression patterns in response to salt and drought stress. Conclusions: Phylogenetic analysis, element prediction, expression data and homology with other species provided strong evidence for functional homology of MATE gene in rice. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hongyi Nie ◽  
Haiyang Geng ◽  
Yan Lin ◽  
Shupeng Xu ◽  
Zhiguo Li ◽  
...  

The forkhead box (Fox) gene family, one of the most important families of transcription factors, participates in various biological processes. However, Fox genes in Hymenoptera are still poorly known. In this study, 14 Fox genes were identified in the genome of Apis cerana. In addition, 16 (Apis mellifera), 13 (Apis dorsata), 16 (Apis florea), 17 (Bombus terrestris), 16 (Bombus impatiens), and 18 (Megachile rotundata) Fox genes were identified in their genomes, respectively. Phylogenetic analyses suggest that FoxA is absent in the genome of A. dorsata genome. Similarly, FoxG is missing in the genomes A. cerana and A. dorsata. Temporal expression profiles obtained by quantitative real-time PCR revealed that Fox genes have distinct expression patterns in A. cerana, especially for three genes ACSNU03719T0 (AcFoxN4), ACSNU05765T0 (AcFoxB), and ACSNU07465T0 (AcFoxL2), which displayed high expression at the egg stage. Tissue expression patterns showed that FoxJ1 is significantly higher in the antennae of A. cerana and A. mellifera compared to other tissues. These results may facilitate a better understanding of the potential physiological functions of the Fox gene family in A. cerana and provide valuable information for a comprehensive functional analysis of the Fox gene family in Hymenopterans.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 694 ◽  
Author(s):  
Qiang Zhang ◽  
Lan Shen ◽  
Deyong Ren ◽  
Jiang Hu ◽  
Guang Chen ◽  
...  

The multiple organellar RNA editing factors (MORF) gene family plays a key role in organelle RNA editing in flowering plants. MORF genes expressions are also affected by abiotic stress. Although seven OsMORF genes have been identified in rice, few reports have been published on their expression patterns in different tissues and under abiotic stress, and OsMORF–OsMORF interactions. In this study, we analyzed the gene structure of OsMORF family genes. The MORF family members were divided into six subgroups in different plants based on phylogenetic analysis. Seven OsMORF genes were highly expressed in leaves. Six and seven OsMORF genes expressions were affected by cold and salt stresses, respectively. OsMORF–OsMORF interaction analysis indicated that OsMORF1, OsMORF8a, and OsMORF8b could each interact with themselves to form homomers. Moreover, five OsMORF proteins were shown to be able to interact with each other, such as OsMORF8a and OsMORF8b interacting with OsMORF1 and OsMORF2b, respectively, to form heteromers. These results provide information for further study of OsMORF gene function.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kangfeng Cai ◽  
Fanrong Zeng ◽  
Junmei Wang ◽  
Guoping Zhang

Abstract Background HAK/KUP/KT (High-affinity K+ transporters/K+ uptake permeases/K+ transporters) is the largest potassium transporter family in plants, and plays pivotal roles in K+ uptake and transport, as well as biotic and abiotic stress responses. However, our understanding of the gene family in barley (Hordeum vulgare L.) is quite limited. Results In the present study, we identified 27 barley HAK/KUP/KT genes (hereafter called HvHAKs) through a genome-wide analysis. These HvHAKs were unevenly distributed on seven chromosomes, and could be phylogenetically classified into four clusters. All HvHAK protein sequences possessed the conserved motifs and domains. However, the substantial difference existed among HAK members in cis-acting elements and tissue expression patterns. Wheat had the most orthologous genes to barley HAKs, followed by Brachypodium distachyon, rice and maize. In addition, six barley HAK genes were selected to investigate their expression profiling in response to three abiotic stresses by qRT-PCR, and their expression levels were all up-regulated under salt, hyperosmotic and potassium deficiency treatments. Conclusion Twenty seven HAK genes (HvHAKs) were identified in barley, and they differ in tissue expression patterns and responses to salt stress, drought stress and potassium deficiency.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiuming Zhang ◽  
Li Zhang ◽  
Miaomiao Ji ◽  
Yifei Wu ◽  
Songlin Zhang ◽  
...  

Abstract Background B-box (BBX) zinc-finger transcription factors play important roles in plant growth, development, and stress response. Although these proteins have been studied in model plants such as Arabidopsis thaliana or Oryza sativa, little is known about the evolutionary history or expression patterns of BBX proteins in grapevine (Vitis vinifera L.). Results We identified a total of 25 VviBBX genes in the grapevine genome and named them according to the homology with Arabidopsis. These proteins were classified into five groups on the basis of their phylogenetic relationships, number of B-box domains, and presence or absence of a CCT domain or VP motif. BBX proteins within the same group showed similar exon-intron structures and were unevenly distributed in grapevine chromosomes. Synteny analyses suggested that only segmental duplication events contributed to the expansion of the VviBBX gene family in grapevine. The observed syntenic relationships between some BBX genes from grapevine and Arabidopsis suggest that they evolved from a common ancestor. Transcriptional analyses showed that the grapevine BBX genes were regulated distinctly in response to powdery mildew infection and various phytohormones. Moreover, the expression levels of a subset of BBX genes in ovules were much higher in seedless grapevine cultivars compared with seeded cultivars during ovule development, implying a potential role in seed abortion. Additionally, VviBBX8, VquBBX15a and VquBBX29b were all located in the nucleus and had transcriptional activity except for VquBBX29b. Conclusions The results of this study establish the genome-wide analysis of the grapevine BBX family and provide a framework for understanding the biological roles of BBX genes in grapevine.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiangjing Yin ◽  
Yu Gao ◽  
Shiren Song ◽  
Danial Hassani ◽  
Jiang Lu

Abstract Background Mitochondrial transcription termination factor (mTERF) is a large gene family which plays a significant role during plant growth under various environmental stresses. However, knowledge of mTERF genes in grapevine (Vitis L.) is limited. Results In this research, a comprehensive analysis of grape mTERF (VvmTERF) genes, including chromosome locations, phylogeny, protein motifs, gene structures, gene duplications, synteny analysis and expression profiles, was conducted. As a result, a total of 25 mTERF genes were identified from the grape genome, which are distributed on 13 chromosomes with diverse densities and segmental duplication events. The grape mTERF gene family is classified into nine clades based on phylogenetic analysis and structural characteristics. These VvmTERF genes showed differential expression patterns in response to multiple phytohormone treatments and biotic stresses, including treatments with abscisic acid and methyl jasmonate, and inoculation of Plasmopara viticola and Erysiphe necator. Conclusions These research findings, as the first of its kind in grapevine, will provide useful information for future development of new stress tolerant grape cultivars through genetic manipulation of VvmTERF genes.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12484
Author(s):  
Zilin Zhao ◽  
Jiaran Shuang ◽  
Zhaoguo Li ◽  
Huimin Xiao ◽  
Yuling Liu ◽  
...  

Background Golden2-Like (GLK) transcription factors are a type of transcriptional regulator in plants. They play a pivotal role in the plant physiological activity process and abiotic stress response. Methods In this study, the potential function of GLK family genes in Gossypium hirsutum was studied based on genomic identification, phylogenetic analysis, chromosome mapping and cis-regulatory elements prediction. Gene expression of nine key genes were analyzed by qRT-PCR experiments. Results Herein, we identified a total of 146 GhGLK genes in Gossypium hirsutum, which were unevenly distributed on each of the chromosomes. There were significant differences in the number and location of genes between the At sub-genome and the Dt sub-genome. According to the phylogenetic analysis, they were divided into ten subgroups, each of which had very similar number and structure of exons and introns. Some cis-regulatory elements were identified through promoter analysis, including five types of elements related to abiotic stress response, five types of elements related to phytohormone and five types of elements involved in growth and development. Based on public transcriptome data analysis, we identified nine key GhGLKs involved in salt, cold, and drought stress. The qRT-PCR results showed that these genes had different expression patterns under these stress conditions, suggesting that GhGLK genes played an important role in abiotic stress response. This study laid a theoretical foundation for the screening and functional verification of genes related to stress resistance of GLK gene family in cotton.


Sign in / Sign up

Export Citation Format

Share Document