scholarly journals Evolution of growth-promoting plant hormones

2010 ◽  
Vol 37 (9) ◽  
pp. 795 ◽  
Author(s):  
John J. Ross ◽  
James B. Reid

The plant growth hormones auxin, gibberellins (GAs) and brassinosteroids (BRs) are major determinants of plant growth and development. Recently, key signalling components for these hormones have been identified in vascular plants and, at least for the GAs and BRs, biosynthetic pathways have been clarified. The genome sequencing of a range of species, including a few non-flowering plants, has allowed insight into the evolution of the hormone systems. It appears that the moss Physcomitrella patens can respond to auxin and contains key elements of the auxin signalling pathway, although there is some doubt as to whether it shows a fully developed rapid auxin response. On the other hand, P. patens does not show a GA response, even though it contains genes for components of GA signalling. The GA response system appears to be more advanced in the lycophyte Selaginella moellendorffii than in P. patens. Signalling systems for BRs probably arose after the evolutionary divergence of the mosses and vascular plants, although detailed information is limited. Certainly, the processes affected by the growth hormones (e.g. GAs) can differ in the different plant groups, and there is evidence that with the evolution of the angiosperms, the hormone systems have become more complex at the gene level. The intermediate nature of mosses in terms of overall hormone biology allows us to speculate about the possible relationship between the evolution of plant growth hormones and the evolution of terrestrial vascular plants in general.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 267
Author(s):  
Anderson do Espirito Santo Pereira ◽  
Halley Caixeta Oliveira ◽  
Leonardo Fernandes Fraceto ◽  
Catherine Santaella

Our agriculture is threatened by climate change and the depletion of resources and biodiversity. A new agriculture revolution is needed in order to increase the production of crops and ensure the quality and safety of food, in a sustainable way. Nanotechnology can contribute to the sustainability of agriculture. Seed nano-priming is an efficient process that can change seed metabolism and signaling pathways, affecting not only germination and seedling establishment but also the entire plant lifecycle. Studies have shown various benefits of using seed nano-priming, such as improved plant growth and development, increased productivity, and a better nutritional quality of food. Nano-priming modulates biochemical pathways and the balance between reactive oxygen species and plant growth hormones, resulting in the promotion of stress and diseases resistance outcoming in the reduction of pesticides and fertilizers. The present review provides an overview of advances in the field, showing the challenges and possibilities concerning the use of nanotechnology in seed nano-priming, as a contribution to sustainable agricultural practices.



1956 ◽  
Vol 7 (2) ◽  
pp. 219-238 ◽  
Author(s):  
S. HOUSLEY ◽  
J. A. BENTLEY


2009 ◽  
Vol 164 (3) ◽  
pp. 347-351 ◽  
Author(s):  
Sandipan Chatterjee ◽  
Sudipta Chatterjee ◽  
Bishnu P. Chatterjee ◽  
Arun K. Guha


Author(s):  
K. S. Potapenko ◽  
N. V. Korotaieva ◽  
V. О. Ivanytsia

Marine actinobacteria are active producers and an unused rich source of various biologically active secondary metabolites, such as antibiotics, antitumor, antiviral and antiinflammatory compounds, biopesticides, plant growth hormones, pigments, enzymes, enzyme inhibitors.In this review describes data from current literature sources for the period from 2017 to 2021 about various bioactive compounds that produce marine actinobacteria, their antibiotic activity and biotechnological potential, the main groups of secondary metabolites and their producers.



The Hormones ◽  
1948 ◽  
pp. 5-74 ◽  
Author(s):  
KENNETH V. THIMANN


2020 ◽  
Vol 21 (12) ◽  
pp. 4340 ◽  
Author(s):  
Juan Mao ◽  
Jianming Li

Brassinosteroids (BRs) are important plant growth hormones that regulate a wide range of plant growth and developmental processes. The BR signals are perceived by two cell surface-localized receptor kinases, Brassinosteroid-Insensitive1 (BRI1) and BRI1-Associated receptor Kinase (BAK1), and reach the nucleus through two master transcription factors, bri1-EMS suppressor1 (BES1) and Brassinazole-resistant1 (BZR1). The intracellular transmission of the BR signals from BRI1/BAK1 to BES1/BZR1 is inhibited by a constitutively active kinase Brassinosteroid-Insensitive2 (BIN2) that phosphorylates and negatively regulates BES1/BZR1. Since their initial discoveries, further studies have revealed a plethora of biochemical and cellular mechanisms that regulate their protein abundance, subcellular localizations, and signaling activities. In this review, we provide a critical analysis of the current literature concerning activation, inactivation, and other regulatory mechanisms of three key kinases of the BR signaling cascade, BRI1, BAK1, and BIN2, and discuss some unresolved controversies and outstanding questions that require further investigation.



2017 ◽  
Vol 10 (12) ◽  
pp. 4273
Author(s):  
Manju Sahu ◽  
Moumita Sinha ◽  
Isukapatla Arjun Rao ◽  
Smriti Sahu ◽  
Bharati Ahirwar


Sign in / Sign up

Export Citation Format

Share Document