Effects of elevated atmospheric carbon dioxide, soil nutrients and water conditions on photosynthetic and growth responses of Alnus hirsuta

2011 ◽  
Vol 38 (9) ◽  
pp. 702 ◽  
Author(s):  
Hiroyuki Tobita ◽  
Akira Uemura ◽  
Mitsutoshi Kitao ◽  
Satoshi Kitaoka ◽  
Yutaka Maruyama ◽  
...  

The objective of this paper is to clarify the effects of multiple environmental conditions, elevated atmospheric CO2 concentration ([CO2]) and soil conditions on the physiological and morphological properties of Alnus hirsuta Turcz., an N2-fixing species, to predict its responses to environmental changes. We examined the responses of photosynthetic properties, leaf characteristics, biomass and N allocation of A. hirsuta to elevated [CO2], soil N and phosphorus availability, and soil drought by using the results of two experiments. The effects of P availability were more marked than those of N availability and soil drought. The photosynthetic responses of A. hirsuta to elevated [CO2] under high P were considered to be ‘photosynthetic acclimation’, while A. hirsuta presented the obvious ‘photosynthetic downregulation’ to elevated [CO2] under low P. Soil P availability affected the growth responses to elevated [CO2] through effects on these photosynthetic properties and biomass allocation. Though elevated [CO2] caused no marked change in the allometric relationships in biomass, with some exceptions, the responses of N allocation among tissue to elevated [CO2] differed from those of biomass allocation. These results suggest that it is necessary to evaluate N mass allocation as well as biomass when we consider the N2-fixing ability of Alnus under elevated [CO2].

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peter T. Pellitier ◽  
Inés Ibáñez ◽  
Donald R. Zak ◽  
William A. Argiroff ◽  
Kirk Acharya

AbstractPlant–mycorrhizal interactions mediate plant nitrogen (N) limitation and can inform model projections of the duration and strength of the effect of increasing CO2 on plant growth. We present dendrochronological evidence of a positive, but context-dependent fertilization response of Quercus rubra L. to increasing ambient CO2 (iCO2) along a natural soil nutrient gradient in a mature temperate forest. We investigated this heterogeneous response by linking metagenomic measurements of ectomycorrhizal (ECM) fungal N-foraging traits and dendrochronological models of plant uptake of inorganic N and N bound in soil organic matter (N-SOM). N-SOM putatively enhanced tree growth under conditions of low inorganic N availability, soil conditions where ECM fungal communities possessed greater genomic potential to decay SOM and obtain N-SOM. These trees were fertilized by 38 years of iCO2. In contrast, trees occupying inorganic N rich soils hosted ECM fungal communities with reduced SOM decay capacity and exhibited neutral growth responses to iCO2. This study elucidates how the distribution of N-foraging traits among ECM fungal communities govern tree access to N-SOM and subsequent growth responses to iCO2.


2019 ◽  
Vol 12 (5) ◽  
pp. 846-856 ◽  
Author(s):  
Ling-Yun Wan ◽  
Shan-Shan Qi ◽  
Chris B Zou ◽  
Zhi-Cong Dai ◽  
Guang-Qian Ren ◽  
...  

Abstract Aims Change in nitrogen (N) availability regulates phosphorus (P) acquisition and potentially alters the competition among native species and invasive weeds. This study determines how current and projected N deposition affect the growth, the intraspecific and interspecific competitive ability of native and invasive plants in calcareous soils with low P availability. Methods A controlled greenhouse experiment was conducted using sparingly soluble hydroxyapatite (HAP) to simulate the calcareous soils with low P availability. The growth and competitive intensity between an invasive weed (Solidago canadensis) and a native weed (Pterocypsela laciniata) exposed to two levels of N addition representative of current and future N deposition in China were experimentally determined. Important Findings P acquisition and the growth of both S. canadensis and P. laciniata growing alone significantly increased with increasing N level. However, the effect of N addition was reduced when intraspecific or interspecific competition existed. N addition altered the competitive relationship between S. canadensis and P. laciniata allowing S. canadensis to out-compete P. laciniata due to variation in P acquisition from HAP. Elevated N deposition might assist the invasion of S. canadensis in the widely distributed calcareous soils under environmental changes.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 939
Author(s):  
Yoko Watanabe ◽  
Kiyomi Hinata ◽  
Laiye Qu ◽  
Satoshi Kitaoka ◽  
Makoto Watanabe ◽  
...  

To elucidate changes in the defensive traits of tree seedlings under global environmental changes, we evaluated foliar defensive traits of the seedlings of successional trees, such as beech, oak, and magnolia grown in a natural-light phytotron. Potted seedlings were grown under the combination of two CO2 concentrations (360 vs. 720 ppm) and two nitrogen (N) treatments (4 vs. 15 kg N ha−1 yr−1) for two growing seasons using quantitative chemical analyses and anatomical method. We hypothesized that the effects of CO2 and N depend on the successional type, with late successional species providing greater defense of their leaves against herbivores, as this species exhibits determinate growth. Beech, a late successional species, responded the most to both elevated CO2 concentration (eCO2) and high N treatment. eCO2 and low N supply enhanced the defensive traits, such as the high leaf mass per area (LMA), high carbon to N ratio (C/N ratio), and increase in the concentrations of total phenolic and condensed tannin in agreement with the carbon–nutrient balance (CNB) hypothesis. High N supply decreased the C/N ratio due to the high N uptake in beech leaves. Oak, a mid–late successional species, exhibited different responses from beech: eCO2 enhanced the LMA, C/N ratio, and concentration of total phenolics of oak leaves, but only condensed tannin increased under high N supply. Magnolia did not respond to all treatments. No interactive effects were observed between CO2 and N supply in all species, except for the concentration of total phenolics in oak. Although the amounts of phenolic compounds in beech and oak varied under eCO2 and high N treatments, the distribution of these compounds did not change. Our results indicate that the changes in the defensive traits of forest tree species under eCO2 with N loading are related to the successional type.


2007 ◽  
Vol 34 (12) ◽  
pp. 1137 ◽  
Author(s):  
Brian J. Atwell ◽  
Martin L. Henery ◽  
Gordon S. Rogers ◽  
Saman P. Seneweera ◽  
Marie Treadwell ◽  
...  

We report on the relationship between growth, partitioning of shoot biomass and hydraulic development of Eucalyptus tereticornis Sm. grown in glasshouses for six months. Close coordination of stem vascular capacity and shoot architecture is vital for survival of eucalypts, especially as developing trees are increasingly subjected to spasmodic droughts and rising atmospheric CO2 levels. Trees were exposed to constant soil moisture deficits in 45 L pots (30–50% below field capacity), while atmospheric CO2 was raised to 700 μL CO2 L–1 in matched glasshouses using a hierarchical, multi-factorial design. Enrichment with CO2 stimulated shoot growth rates for 12–15 weeks in well-watered trees but after six months of CO2 enrichment, shoot biomasses were not significantly heavier (30% stimulation) in ambient conditions. By contrast, constant drought arrested shoot growth after 20 weeks under ambient conditions, whereas elevated CO2 sustained growth in drought and ultimately doubled the shoot biomass relative to ambient conditions. These growth responses were achieved through an enhancement of lateral branching up to 8-fold due to CO2 enrichment. In spite of larger transpiring canopies, CO2 enrichment also improved the daytime water status of leaves of droughted trees. Stem xylem development was highly regulated, with vessels per unit area and cross sectional area of xylem vessels in stems correlated inversely across all treatments. Furthermore, vessel numbers related to the numbers of leaves on lateral branches, broadly supporting predictions arising from Pipe Model Theory that the area of conducting tissue should correlate with leaf area. Diminished water use of trees in drought coincided with a population of narrower xylem vessels, constraining hydraulic capacity of stems. Commensurate with the positive effects of elevated CO2 on growth, development and leaf water relations of droughted trees, the capacity for long-distance water transport also increased.


2018 ◽  
Vol 10 (3) ◽  
pp. 400-409 ◽  
Author(s):  
Hamid Reza ESHGHIZADEH ◽  
Morteza ZAHEDI ◽  
Samaneh MOHAMMADI

Intraspecific variations in wheat growth responses to elevated CO2 was evaluated using 20 Iranian bread wheat (Triticum aestivum L.) cultivars. The plants were grown in the modified Hoagland nutrient solution at a greenhouse until 35 days of age using two levels of CO2 (~380 and 700 µmol mol–1). The shoot and root dry weights of the wheat cultivars exhibited average enhancements of 17% and 36%, respectively, under elevated CO2. This increase was associated with higher levels of chlorophyll a (25%), chlorophyll b (21%), carotenoid (30%), leaf area (54%) and plant height (49.9%). The leaf area (r = 0.69**), shoot N content (r = 0.62**), plant height (r = 0.60**) and root volume (r = 0.53*) were found to have important roles in dry matter accumulation of tested wheat cultivars under elevated CO2 concentration. However, responses to elevated CO2 were considerably cultivar-dependent. Based on the stress susceptibility index (SSI) and stress tolerance index (STI), the wheat cultivars exhibiting the best response to elevated CO2 content were ‘Sistan’, ‘Navid’, ‘Shiraz’, ‘Sepahan’ and ‘Bahar’, while the ones with poor responses were ‘Omid’, ‘Marun’, ‘Sorkhtokhm’ and ‘Tajan’. The findings from the present experiment showed significant variation among the Iranian wheat cultivars in terms of their responses to elevated air CO2, providing the opportunity to select the most efficient ones for breeding purposes.


1992 ◽  
Vol 40 (5) ◽  
pp. 457 ◽  
Author(s):  
SC Wong ◽  
PE Kriedemann ◽  
GD Farquhar

Four eucalypt species were selected to represent two ecologically disparate groups which would be expected to contrast in seedling vigour and in the nature of growth responses to CO2 × nitrogen supply. Eucalyptus camaldulensis and E. cypellocarpa were taken as examples of fast-growing species with a wide distribution, that develop into large trees. By contrast, E. pauciflora and E. pulverulenta become smaller trees, and show a more limited distribution. Seedlings were established in pots (5 L) of a loamy soil and supplied with nutrient solution containing either 1.2 or 6.0 mM NO3- in both ambient (33 Pa) and CO2-enriched (66 Pa) greenhouses. Analysis of growth response to treatments (2 × 2 factorial) was based on destructive harvest of plants sampled on four occasions over 84 days for E. carnaldulensis and E. cypellocarpa, and 100 days for E. pulverulenta and E. pauciflora. A positive CO2 × N interaction on plant dry mass and leaf area was expressed in all species throughout the study period. In E. carnaldulensis and E. cypellocarpa, plant mass was doubled by high N at 33 Pa CO2, compared with a three to four-fold increase at 66 Pa to reach 34g by final harvest. In E. pulverulenta and E. pauciflora, slower growth resulted in about 50% less mass at a given age, but relative increases due to CO2 and N were of a similar order. A distinction can be made between N and CO2 effects on growth processes as follows. When trees were grown on low N, elevated CO2 increased nitrogen-use efficiency (NUE) at both leaf and whole plant levels. On high N, leaf NUE was increased in E. camaldulensis and E. cypellocarpa, but decreased in E. pulverulenta and E. pauciflora. Whole plant NUE showed no consistent response to elevated CO2 when plants were supplied high N. Net assimilation rate (NAR) was increased by elevated CO2 in all species on either N treatment. Moreover, high N increased NAR under either CO2 treatment in all species. There was a positive N × CO2 interaction on NAR in E. carnaldulensis and E. cypellocarpa, but not in E. pulverulenta and E. pauciflora. Growth indices for E. carnaldulensis and E. cypellocarpa species, and especially E. carnaldulensis, generally exceeded those for E. pulverulenta and E. pauciflora in terms of NAR, leaf NUE, N-enhancement of CO2 effects on leaf area and biomass, and non-structural carbohydrate content of foliage.


1998 ◽  
Vol 25 (3) ◽  
pp. 287 ◽  
Author(s):  
Saman P. Seneweera ◽  
Oula Ghannoum ◽  
Jann Conroy

The hypothesis that shoot growth responses of C4 grasses to elevated CO2 are dependent on shoot water relations was tested using a C4 grass, Panicum coloratum (NAD-ME subtype). Plants were grown for 35 days at CO2 concentrations of 350 or 1000 µL CO2 L-1. Shoot water relations were altered by growing plants in soil which was brought daily to 65, 80 or 100% field capacity (FC) and by maintaining the vapour pressure deficit (VPD) at 0.9 or 2.1 kPa. At 350 µL CO2 L-1, high VPD and lower soil water content depressed shoot dry mass, which declined in parallel at each VPD with decreasing soil water content. The growth depression at high VPD was associated with increased shoot transpiration, whereas at low soil water, leaf water potential was reduced. Elevated CO2 ameliorated the impact of both stresses by decreasing transpiration rates and raising leaf water potential. Consequently, high CO2 approximately doubled shoot mass and leaf length at a VPD of 2.1 kPa and soil water contents of 65 and 80% FC but had no effect on unstressed plants. Water use efficiency was enhanced by elevated CO2 under conditions of stress but this was primarily due to increases in shoot mass. High CO2 had a greater effect on leaf growth parameters than on stem mass. Elevated CO2 increased specific leaf area and leaf area ratio, the latter at high VPD only. We conclude that high CO2 increases shoot growth of C4 grasses by ameliorating the effects of stress induced by either high VPD or low soil moisture. Since these factors limit growth of field-grown C4 grasses, it is likely that their biomass will be enhanced by rising atmospheric CO2 concentrations.


Author(s):  
Innocent A. Ugbong ◽  
Ivan V. Budagov

This paper seeks to show that due to changing climates, there are salient marginal Sahelian conditions (conditions of aridity) emerging on the Northern fringes of Cross River State, a state that is geographical positioned in the southern rainforest belt of Nigeria. The paper adopts a simple descriptive approach and shows the distinct characteristics of this zone, in terms of floristic composition and edaphic and geomorphic structures under changing conditions. Some relationships are established between environmental variables like health, water supply and crop-yield on one hand, and climatic variation, floral life-forms and soil conditions on the other. The changing land use patterns relative to environmental changes are also examined. The paper concludes with a look at current and future adaption strategies to these climate-induced conditions.


Sign in / Sign up

Export Citation Format

Share Document