High night temperature decreases leaf photosynthesis and pollen function in grain sorghum

2011 ◽  
Vol 38 (12) ◽  
pp. 993 ◽  
Author(s):  
P. V. Vara Prasad ◽  
Maduraimuthu Djanaguiraman

High temperature stress is an important abiotic stress limiting sorghum (Sorghum bicolor (L.) Moench) yield in arid and semiarid regions. Climate models project greater increases in the magnitude of night temperature compared with day temperature. We hypothesise that high night temperature (HNT) during flowering will cause oxidative damage in leaves and pollen grains, leading to decreased photosynthesis and seed-set, respectively. The objectives of this research were to determine effects of HNT on (1) photochemical efficiency and photosynthesis of leaves, and (2) pollen functions and seed-set. Sorghum plants (hybrid DK-28E) were exposed to optimum night temperature (ONT; 32 : 22°C, day maximum :  night minimum) or HNT (32 : 28°C, day maximum : night minimum) for 10 days after complete panicle emergence. Exposure to HNT increased thylakoid membrane damage and non-photochemical quenching. However, HNT decreased chlorophyll content, quantum yield of PSII, photochemical quenching, electron transport rate and photosynthesis of leaves as compared with ONT. Exposure to HNT increased the reactive oxygen species (ROS) level of leaves and pollen grains. Lipid molecular species analyses in pollen grains showed that HNT decreased phospholipid saturation levels and altered various phospholipid levels compared with ONT. These changes in phospholipids and greater ROS in pollen grains may be responsible for decreased pollen function, leading to lower seed-set.

2019 ◽  
Vol 47 (3) ◽  
Author(s):  
Yaoguo QIN ◽  
Zesheng YAN ◽  
Honghui GU ◽  
Zhengxiang WANG ◽  
Xiong JIANG ◽  
...  

To study the effects of shading level on the photosynthesis and corm weight of konjac plant, the chlorophyll fluorescence parameters, daily variation of relative electron transport rate (rETR), net photosynthetic rate (Pn), and corm weight of konjac plants under different treatments were measured and comparatively analyzed through covered cultivation of biennial seed corms with shade nets at different shading rates (0%, 50%, 70%, and 90%). The results showed that with the increase in shading rate, the maximum photochemical efficiency, potential activity, and non-photochemical quenching of photosystem Ⅱ (PSⅡ) of konjac leaves constantly increased, whereas the actual photosynthetic efficiency, rETR, and photochemical quenching of PSⅡ initially increased and then decreased. This result indicated that moderate shading could enhance the photosynthetic efficiency of konjac leaves. The daily variation of rETR in konjac plants under unshaded treatment showed a bimodal curve, whereas that under shaded treatment displayed a unimodal curve. The rETR of plants with 50% treatment and 70% treatment was gradually higher than that under unshaded treatment around noon. The moderate shading could increase the Pn of konjac leaves. The stomatal conductance and transpiration rate of the leaves under shaded treatment were significantly higher than those of the leaves under unshaded treatment. Shading could promote the growth of plants and increase corm weight. The comprehensive comparison shows that the konjac plants had strong photosynthetic capacity and high yield when the shading rate was 50%-70% for the area.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2014 ◽  
Vol 151 (4) ◽  
pp. 544-558 ◽  
Author(s):  
Amir Eppel ◽  
Ruth Shaked ◽  
Gil Eshel ◽  
Simon Barak ◽  
Shimon Rachmilevitch

Author(s):  
Cleiton Fernando Barbosa Brito ◽  
Varley Andrade Fonseca ◽  
Marcelo Rocha dos Santos ◽  
Sérgio Luiz Rodrigues Donato ◽  
Alessandro De Magalhães Arantes ◽  
...  

Studies determining physiological characteristics of field-grown pineapples irrigated with low-quality water are lacking. This work evaluated the photochemical efficiency of ‘Pérola’ pineapple irrigated with saline water in the semiarid region of Bahia, Brazil. The experiment was carried out in randomized blocks with five treatments consisting of the following irrigation depths: 100% of ETc using water with electrical conductivity (ECw) of 0.75 dS m-1; and 50, 75, 100 and 125% of ETc using water with ECw of 3.6 dS m-1. Chlorophyll a fluorescence measurements were made over the course of 13 months using a pulse-modulated fluorometer, in all treatments. Quantum efficiency (Fv/Fm) fluctuated throughout the cycle of the pineapple with values below the ideal, especially at the end of the crop cycle. Quantum yield of photosystem II (Yield), photochemical quenching (qP), non-photochemical quenching (NPQ) and chlorophyll fluorescence decrease ratio (RFd) were not influenced by irrigation depths. Therefore, energy used for photosynthetic processes in pineapple plants is not affected by irrigation using saline water with electrical conductivity of 3.6 dS m-1.


2012 ◽  
Vol 2 (2) ◽  
pp. 24 ◽  
Author(s):  
Jie Zhou ◽  
Lei Fang ◽  
Xiao Wang ◽  
Lanping Guo ◽  
Luqi Huang

<p>Smoke-water (SW) had been reported to improve the growth of <em>Isatis indigotica</em>, a Chinese medicinal plant. However, there were very few reports on the mechanism of smoke-water improving plant growth. In this study the effects of smoke-water on the photosynthetic characteristics of <em>I.</em><em> indigotica</em> seedlings were investigated for the purpose of understanding the mechanism behind this improved plant growth. The results showed that net photosynthetic rate (<em>P<sub>n</sub></em>) was increased by smoke-water, reaching a maximum on 15, 5 and 15 d after treatment with smoke-water at dilutions of 1:500, 1:1000 and 1:2000 respectively. Transpiration rate (<em>T<sub>r</sub></em>) and stomatal conductance (<em>G<sub>s</sub></em>) both showed similar trends to<sub> </sub><em>P<sub>n</sub></em>, however, intercellular CO<sub>2</sub> concentration<em> </em>(<em>C<sub>i</sub></em>) was decreased with smoke-water treatment. The F<sub>v</sub>/F<sub>m</sub> was not significantly influenced by smoke-water treatment. The ?PSII was markedly promoted with the application of smoke-water (1:1000) compared with the control and the coefficient of photochemical quenching (qP) showed a similar trend to ?PSII. However the coefficient of non-photochemical quenching of chlorophyll (NPQ) was decreased with treatment of smoke-water. These findings indicate that smoke-water treatment induce an increase in photosynthesis and suggest the main factors leading to this might be the improved stomatal conductance and the enhanced level of the photochemical efficiency of PSII in leaves.</p>


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
M.M. SILVA ◽  
J.B. SANTOS ◽  
E.A. SANTOS ◽  
M.V. SANTOS ◽  
L.T. SARDINHA ◽  
...  

ABSTRACT: Herbicide volatilization may generate environmental and agricultural problems and result in visual or physiological contamination of non-target plant species. Thus, the goal of this research was to study the fluorescence of chlorophyll a in weeds and fodder plants under the effect of clomazone in the form of atmospheric waste. The experiment was conducted under field conditions designed in randomized blocks with four replications, in a 6 x 4 factor scheme, with six plant species: Dolichos lablab, bicolor Sorgum, Urochloa brizantha, Macrotyloma axillare, Portulaca oleracea and Sida rhombifolia. There were four solutions containing 0, 360, 720 and 1,080 g ha-1 of clomazone (0, 0.05, 0.10 and 0.15 mg L-1, considered as the volume). Seedbeds were built and covered with transparent polyethylene film of 150 μm, with a volume of 12 m³. Fodder plants were sown in line, while weeds were selected according to the incidence. On the sixteenth day after emergence, concentrations of herbicide diluted on three petri dishes were inserted. After 72 hours of exposure, the tunnels were opened and the dishes were removed, noticing evaporation of the product. The following evaluationswere performed: plant poisoning, initial fluorescence, maximum quantum yield of PSII, photochemical quenching, non-photochemical quenching and chlorophyll content. Even at concentrations that do not promote visual effect, clomazone can cause significant damage in the photosynthetic activity of the species. The physiological variables chlorophyll, maximum quantum yield of PSII and initial chlorophyll fluorescence can be effectively used to monitor clomazone waste in the atmosphere.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12741
Author(s):  
Ruier Zeng ◽  
Jing Cao ◽  
Xi Li ◽  
Xinyue Wang ◽  
Ying Wang ◽  
...  

Fifteen peanut varieties at the pod filling stage were exposed to waterlogging stress for 7 days, the enzyme activities and fluorescence parameters were measured after 7 days of waterlogging and drainage. The waterlogging tolerance and recovery capability of varieties were identified. After waterlogging, waterlogging tolerance coefficient (WTC) of relative electrolyte linkage (REL), malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity, non-photochemical quenching (NPQ) and photochemical quenching (qL) of leaves of most peanut varieties were increased, while the WTC of the soil and plant analysis development (SPAD) value, PS II actual quantum yield (ΦPS II), maximum photochemical efficiency (Fv/Fm) were decreased. After drainage, the WTC of REL, MDA content, SOD and CAT activity of leaves were decreased compared with that of after waterlogging, but these indicators of a few cultivars were increased. ΦPS II, Fv/Fm and qL can be used as important indexes to identify waterlogging recovery capability. There was a significant negative correlation between recovery capability and the proportion of reduction in yield, while no significant correlation was found between waterlogging tolerance and the proportion of reduction in yield. Therefore, it is recommended to select varieties with high recovery capability and less pod number reduction under waterlogging in peanut breeding and cultivation.


2018 ◽  
pp. 241-251
Author(s):  
Tünde Kaprinyák ◽  
Réka Láposi ◽  
László Bekő ◽  
Szilárd Tóth

The Fleischmann Rudolf Research Institute in Kompolt is not only famous for plant breeding but the institute also surveys the effects of different nutrient supply methods since 1918. In 2017, we joined this research supported by EFOP 3.6.1 project. Our aim was to investigate photochemical processes – which is one of the most determinant in case of yield – of crops by in vivo field measurements. We measured the chlorophyll content of leaves using Minolta SPAD 502. We used miniPAM fluorometer to determine actual photochemical efficiency and non-photochemical quenching of PSII during natural light conditions and also to evaluate the pigment (chlorophylls and carotenoids) and water content of leaves we applied field spectrophotometer (ASD FieldSpecPro 3). We utilized these methods by various treatments (1. treatment with soil bacteria + head and base fertilizer; 2. treated by only head fertilizer; 3. treated by only base-fertilizer) in field experiment of autumn wheat (4.1–2.43–1.19 ha) in June, 2017. The difference between treatments was clearly detectable. In the case of the first treatment, physiological processes were more intense and the ripening occurred earlier. The obtained yield was the highest in the case of the area treated by soil bacterial. Based on the results, the first treatment can be recommended in practice.


HortScience ◽  
2011 ◽  
Vol 46 (6) ◽  
pp. 895-900 ◽  
Author(s):  
Julián Miralles-Crespo ◽  
Juan Antonio Martínez-López ◽  
José Antonio Franco-Leemhuis ◽  
Sebastián Bañón-Arias

Physiological and biochemical indicators that reflect the responses of plants to chilling stress could be useful for identifying plant damage caused by freezing or other stresses. The objective of this study was to determine any relationship between changes in chlorophyll fluorescence and the appearance of visual symptoms resulting from freezing temperatures in two cultivars of oleander. In the least frost-sensitive cultivar (yellow oleander), freezing temperatures (–4 °C for 3 h) did not produce changes in the photochemical parameters. In the more frost-sensitive cultivar (pink oleander), non-photochemical quenching (NPQ) and the maximum photochemical efficiency of photosystem II (Fv/Fm) decreased after the same freezing treatment. The first of these potential indicators remained low, whereas the second steadily recovered during the 4 months after freezing simulation. The results suggest that measuring chlorophyll fluorescence may provide a rapid method for assessing freezing injury in oleander.


2018 ◽  
Vol 65 (3) ◽  
Author(s):  
Yuman Cao ◽  
Zhiqiang Zhang ◽  
Tong Zhang ◽  
Zhang You ◽  
Jincai Geng ◽  
...  

Zeaxanthin epoxidase (ZEP) plays an important role in xanthophyll cycle which is a process closely related to photosynthesis. However, an impact of ZEP on low light stress has not been reported. In this study, the functions of an alfalfa (Medicago sativa) zeaxanthin epoxidase gene, MsZEP, in response to low light stress were investigated by heterologous expression in tobacco (Nicotiana tabacum). Under normal light condition, parameters measured were not significantly different between transgenic and wild-type (WT) plants except for non-photochemical quenching value and chlorophyll a content, while difference existed in low light stress. We found that MsZEP-overexpression tobacco grew faster than WT (p≤0.05). The leaf fresh weight and leaf area of transgenic plants were significantly higher, and the number of stoma was greater in MsZEP-overexpression tobacco. As for photosynthetic characteristics, quantum yield of PSII (ΦPSII) and maximal photochemical efficiency of PSII (Fv/Fm) were not significantly different, wherase non-photochemical quenching (NPQ), net photosynthetic rate (Pn), stomata conductance (Gs) and transpiration rate (Tr) of MsZEP-overexpression tobacco were significantly higher than WT plants. However, no significant difference was existed between the two types of tobacco in chlorophyll and carotenoids content. In conclusion, MsZEP can improve the ability of tobacco to withstand low light stress, which might be due to its stronger photosynthetic activity and the improvement of stomata density under low light.


2018 ◽  
Author(s):  
Xinyi Wu ◽  
Sheng Shu ◽  
Yu Wang ◽  
Ruonan Yuan ◽  
Shirong Guo

AbstractWhen plants suffer from abiotic stresses, cyclic electron flow (CEF) is induced for photoprotection. Putrescine (Put), a main polyamine in chloroplasts, plays a critical role in stress tolerance. To elucidate the mechanism of Put regulating CEF for salt-tolerance in cucumber leaves, we measured chlorophyll fluorescence, P700 redox state, ATP and NADPH accumulation and so on. The maximum photochemical efficiency of PSII (Fv/Fm) was not influenced by NaCl and/or Put, but the activity of PSI reaction center (P700) was seriously inhibited by NaCl. Salt stress induced high level of CEF, moreover, NaCl and Put treated plants exhibited much higher CEF activity and ATP accumulation than single salt-treated plants to provide adequate ATP/NADPH ratio for plants growth. Furthermore, Put decreased the trans-membrane proton gradient (ΔpH), accompanied by reducing the pH-dependent non-photochemical quenching (qE) and increasing efficient quantum yield of PSII (Y(II)). The ratio of NADP+/NADPH in salt stressed leaves was significantly increased by Put, indicating that Put relieved over-reduction pressure at PSI accepter side. Taken together, our results suggest that exogenous Put enhances CEF to supply extra ATP for PSI recovery and CO2 assimilation, decreases ΔpH for electron transport related proteins staying active, and enable the non-photochemical quenching transformed into photochemical quenching.


Sign in / Sign up

Export Citation Format

Share Document