Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated 'ROS-Ca2+ Hub'

2018 ◽  
Vol 45 (2) ◽  
pp. 9 ◽  
Author(s):  
Vadim Demidchik ◽  
Sergey Shabala

Elevation in the cytosolic free calcium is crucial for plant growth, development and adaptation. Calcium influx into plant cells is mediated by Ca2+ depolarisation-activated, hyperpolarisation-activated and voltage-independent Ca2+-permeable channels (DACCs, HACCs and VICCs respectively). These channels are encoded by the following gene families: (1) cyclic nucleotide-gated channels (CNGCs), (2) ionotropic glutamate receptors (GLRs), (3) annexins, (4) ‘mechanosensitive channels of small (MscS) conductance’-like channels (MSLs), (5) ‘mid1-complementing activity’ channels (MCAs), Piezo channels, and hyperosmolality-induced [Ca2+]cyt. channel 1 (OSCA1). Also, a ‘tandem-pore channel1’ (TPC1) catalyses Ca2+ efflux from the vacuole in response to the plasma membrane-mediated Ca2+ elevation. Recent experimental data demonstrated that Arabidopsis thaliana (L.) Heynh. CNGCs 2, 5–10, 14, 16 and 18, GLRs 1.2, 3.3, 3.4, 3.6 and 3.7, TPC1, ANNEXIN1, MSL9 and MSL10,MCA1 and MCA2, OSCA1, and some their homologues counterparts in other species, are responsible for Ca2+ currents and/or cytosolic Ca2+ elevation. Extrusion of Ca2+ from the cytosol is mediated by Ca2+-ATPases and Ca2+/H+ exchangers which were recently examined at the level of high resolution crystal structure. Calcium-activated NADPH oxidases and reactive oxygen species (ROS)-activated Ca2+ conductances form a self-amplifying ‘ROS-Ca2+hub’, enhancing and transducing Ca2+ and redox signals. The ROS-Ca2+ hub contributes to physiological reactions controlled by ROS and Ca2+, demonstrating synergism and unity of Ca2+ and ROS signalling mechanisms.

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Margarita Jacaranda Rosendo-Pineda ◽  
Juan Jesus Vicente ◽  
Oscar Vivas ◽  
Jonathan Pacheco ◽  
Arlet Loza-Huerta ◽  
...  

AbstractN-methyl-D-aspartate receptors (NMDAR) are glutamate-gated calcium channels named after their artificial agonist. NMDAR are implicated in cell proliferation under normal and pathophysiological conditions. However, the role of NMDAR during mitosis has not yet been explored in individual cells. We found that neurotransmitter-evoked calcium entry via endogenous NMDAR in cortical astrocytes was transient during mitosis. The same occurred in HEK293 cells transfected with the NR1/NR2A subunits of NMDAR. This transient calcium entry during mitosis was due to phosphorylation of the first intracellular loop of NMDAR (S584 of NR1 and S580 of NR2A) by cyclin B/CDK1. Expression of phosphomimetic mutants resulted in transient calcium influx and enhanced NMDAR inactivation independent of the cell cycle phase. Phosphomimetic mutants increased entry of calcium in interphase and generated several alterations during mitosis: increased mitotic index, increased number of cells with lagging chromosomes and fragmentation of pericentriolar material. In summary, by controlling cytosolic calcium, NMDAR modulate mitosis and probably cell differentiation/proliferation. Our results suggest that phosphorylation of NMDAR by cyclin B/CDK1 during mitosis is required to preserve mitotic fidelity. Altering the modulation of the NMDAR by cyclin B/CDK1 may conduct to aneuploidy and cancer.


1992 ◽  
Vol 262 (1) ◽  
pp. E68-E75 ◽  
Author(s):  
W. Wang ◽  
N. Hayama ◽  
T. V. Robinson ◽  
R. E. Kramer ◽  
E. G. Schneider

Alterations in extracellular osmolality have powerful inverse effects on basal and potassium- and angiotensin-stimulated aldosterone secretion. With the use of bovine glomerulosa cells grown in primary culture, the effects of alterations in osmolality on cytosolic calcium concentration ([Ca2+]c), efflux and uptake of 45Ca2+, and aldosterone secretion were determined. Alterations in osmolality, independent of sodium concentration, have inverse effects on aldosterone secretion, which are correlated with simultaneous changes in [Ca2+]c measured using fura-2. Reductions in osmolality cause dose-dependent biphasic increases in [Ca2+]c different from the monophasic increases in [Ca2+]c produced by increases in potassium concentration. Like potassium- and angiotensin-stimulated increases in [Ca2+]c, hypotonically induced increases in [Ca2+]c are associated with an increase in 45Ca2+ efflux. Reductions in osmolality also increased the uptake of 45Ca2+, an effect apparent at 2 min and persistent for at least 30 min. In the absence of extracellular calcium, reductions in osmolality, as increases in potassium concentration but not angiotensin, fail to increase [Ca2+]c, efflux of 45Ca2+, or aldosterone secretion. In conclusion, osmolality-induced alterations in aldosterone secretion are associated with parallel changes in [Ca2+]c, effects caused by alteration in the influx of extracellular calcium. On the basis of these and previous studies, we hypothesize that osmolality affects calcium influx by activating voltage-dependent or stretch-activated calcium channels.


2018 ◽  
Author(s):  
Maria E Solesio ◽  
Luis C Garcia del Molino ◽  
Pia A Elustondo ◽  
Diao Catherine ◽  
Joshua C Chang ◽  
...  

Mitochondrial free calcium is critically linked to the regulation of bioenergetics and cellular signaling. Free calcium concentrations within the organelle are regulated by two processes: flux across the mitochondrial inner membranes and buffering by phosphate. The key role of phosphate in the buffering of free calcium in mitochondria is well-established. Specifically, during stimulated calcium uptake, calcium is partially buffered by orthophosphate, allowing for elevated calcium concentrations, while preventing calcium toxicity. However, this buffering system is expected to lead to the irreversible formation of insoluble precipitates, which are not observed in living cells, under physiological conditions. Here, we demonstrate that the regulation of free mitochondrial calcium requires the presence of free inorganic polyphosphate (polyP) within the organelle. Specifically, we found that the verexpression of a mitochondrial targeted enzyme hydrolyzing polyP, leads to the loss of the cellular ability to maintain elevated calcium concentrations within the organelle, following stimulated cytoplasmic signal. We hypothesize that the presence of polyP prevents the formation of calciumphosphate insoluble clusters, allowing for the maintenance of elevated free calcium levels, during stimulated calcium uptake.


1993 ◽  
Vol 265 (2) ◽  
pp. H569-H580 ◽  
Author(s):  
M. Ziche ◽  
D. Zawieja ◽  
R. K. Hester ◽  
H. Granger

The effect of bradykinin (BK) on cytosolic calcium in coronary venular endothelial cells (CVEC) was studied using the intracellular calcium indicator indo 1. At normal extracellular calcium levels, CVEC responded to BK at concentrations as low as 0.1 pM; maximum cytosolic calcium spikes occurred at 10 nM. In calcium-free medium, poststimulation cytosolic calcium concentration returned to levels below prestimulation values, implying that BK modulates calcium extrusion mechanisms that are normally masked by calcium influx into the cell. To test this hypothesis, we depleted internal stores of calcium using two approaches: preconditioning or blockade of the endoplasmic reticulum calcium pump with the sesquiterpene lactone, thapsigargin. Depletion by preconditioning consisted of two prior doses of BK followed by a third stimulus of the agonist. Under these conditions, the final dose of BK caused a fall, rather than rise, in cytosolic calcium. Thapsigargin blocked the endoplasmic reticulum calcium pump, leading to a steady-state rise in intracellular calcium concentration. Subsequent exposure of these cells to BK also led to a fall in cytosolic calcium. The preconditioning and thapsigargin studies are consistent with a modulation of calcium extrusion processes by BK in CVEC. The signals responsible for this modulation are unknown.


2001 ◽  
Vol 86 (2) ◽  
pp. 773-777 ◽  
Author(s):  
Chen-Jei Tai ◽  
Sung Keun Kang ◽  
Peter C. K. Leung

ATP has been shown to modulate progesterone production in human granulosa-luteal cells (hGLCs) in vitro. After binding to a G protein-coupled P2 purinergic receptor, ATP stimulates phospholipase C. The resultant production of diacylglycerol and inositol triphosphate activates protein kinase C (PKC) and intracellular calcium [Ca2+]i mobilization, respectively. In the present study, we examined the potential cross-talk between the PKC and Ca2+ pathway in ATP signal transduction. Specifically, the effect of PKC on regulating ATP-evoked[ Ca2+]i oscillations were examined in hGLCs. Using microspectrofluorimetry, [Ca2+]i oscillations were detected in Fura-2 loaded hGLCs in primary culture. The amplitudes of the ATP-triggered [Ca2+]i oscillations were reduced in a dose-dependent manner by pretreating the cells with various concentrations (1 nm to 10μ m) of the PKC activator, phorbol-12-myristate-13-acetate (PMA). A 10 μm concentration of PMA completely suppressed 10 μm ATP-induced oscillations. The inhibitory effect occurred even when PMA was given during the plateau phase of ATP evoked [Ca2+]i oscillations, suggesting that extracellular calcium influx was inhibited. The role of PKC was further substantiated by the observation that, in the presence of a PKC inhibitor, bisindolylmaleimide I, ATP-induced[ Ca2+]i oscillations were not completely suppressed by PMA. Furthermore, homologous desensitization of ATP-induced calcium oscillations was partially reversed by bisindolylmaleimide I, suggesting that activated PKC may be involved in the mechanism of desensitization. These results demonstrate that PKC negatively regulates the ATP-evoked [Ca2+]i mobilization from both intracellular stores and extracellular influx in hGLCs and further support a modulatory role of ATP and P2 purinoceptor in ovarian steroidogenesis.


1993 ◽  
Vol 265 (1) ◽  
pp. G35-G42 ◽  
Author(s):  
T. Mine ◽  
I. Kojima ◽  
E. Ogata

The aim of the present study was to assess the role of calcium fluxes in the action of glucagon on glycogenolysis and gluconeogenesis in isolated rat hepatocytes. Calcium influx was blocked by two ways: by use of the compound tetramethrin and by reduction of extracellular calcium to 1 microM. The minimal concentration of tetramethrin that inhibited glucagon-mediated calcium entry was 7.5 x 10(-7) M. In the presence of 7.5 x 10(-7) M tetramethrin, glucagon-induced glycogenolysis was markedly attenuated when glucagon concentration was 10(-9) M or higher. In contrast, tetramethrin had no effect on glucogenolysis evoked by lower concentrations of glucagon. Similarly, tetramethrin greatly reduced gluconeogenesis induced by high concentrations of glucagon without affecting the effect of low concentrations of glucagon. The same results were obtained in the presence of 1 microM extracellular calcium. To abolish glucagon-induced elevation of cytoplasmic free calcium concentration, we heavily loaded quin2 into hepatocytes. In these cells, glycogenolysis evoked by low concentrations of glucagon was completely abolished. Glycogenolysis caused by high concentrations of glucagon was markedly inhibited. These results indicate that glucagon action on hepatic glucose metabolism is mediated by two different mechanisms, which depend on concentrations of glucagon.


1997 ◽  
Vol 273 (5) ◽  
pp. E922-E931 ◽  
Author(s):  
M. C. Rebsamen ◽  
D. J. Church ◽  
D. Morabito ◽  
M. B. Vallotton ◽  
U. Lang

The mechanism of endothelin-1 (ET-1)-induced atrial natriuretic peptide (ANP) release was studied in neonatal rat ventricular cardiomyocytes. These cells expressed a single high-affinity class of ETAreceptor (dissociation constant = 54 ± 18 pM, n = 3), but no ETB receptors. Incubation of cardiomyocytes with ET-1 led to concentration-dependent ANP release and prostacyclin production. ET-1-induced ANP release was affected by neither protein kinase C (PKC) inhibition or downregulation nor by cyclooxygenase inhibition, indicating that ET-1-stimulated ANP secretion is not a PKC-mediated, prostaglandin-dependent process. Furthermore, ET-1 significantly stimulated adenosine 3′,5′-cyclic monophosphate (cAMP) production and increased cytosolic calcium concentration in these preparations. Both ET-1-induced calcium influx and ANP release were decreased by the cAMP antagonist Rp-cAMPS, the Rp diastereoisomer of cAMP. Moreover, ET-1-induced ANP secretion was strongly inhibited in the presence of nifedipine as well as in the absence of extracellular calcium. Thus our results suggest that ET-1 stimulates ANP release in ventricular cardiomyocytes via an ETAreceptor-mediated pathway involving cAMP formation and activation of a nifedipine-sensitive calcium channel.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


1995 ◽  
Vol 74 (05) ◽  
pp. 1323-1328 ◽  
Author(s):  
Dominique Lasne ◽  
José Donato ◽  
Hervé Falet ◽  
Francine Rendu

SummarySynthetic peptides (TRAP or Thrombin Receptor Activating Peptide) corresponding to at least the first five aminoacids of the new N-terminal tail generated after thrombin proteolysis of its receptor are effective to mimic thrombin. We have studied two different TRAPs (SFLLR, and SFLLRN) in their effectiveness to induce the different platelet responses in comparison with thrombin. Using Indo-1/AM- labelled platelets, the maximum rise in cytoplasmic ionized calcium was lower with TRAPs than with thrombin. At threshold concentrations allowing maximal aggregation (50 μM SFLLR, 5 μM SFLLRN and 1 nM thrombin) the TRAPs-induced release reaction was about the same level as with thrombin, except when external calcium was removed by addition of 1 mM EDTA. In these conditions, the dense granule release induced by TRAPs was reduced by over 60%, that of lysosome release by 75%, compared to only 15% of reduction in the presence of thrombin. Thus calcium influx was more important for TRAPs-induced release than for thrombin-induced release. At strong concentrations giving maximal aggregation and release in the absence of secondary mediators (by pretreatment with ADP scavengers plus aspirin), SFLLRN mobilized less calcium, with a fast return towards the basal level and induced smaller lysosome release than did thrombin. The results further demonstrate the essential role of external calcium in triggering sustained and full platelet responses, and emphasize the major difference between TRAP and thrombin in mobilizing [Ca2+]j. Thus, apart from the proteolysis of the seven transmembrane receptor, another thrombin binding site or thrombin receptor interaction is required to obtain full and complete responses.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1490
Author(s):  
Osama M. Elzamzamy ◽  
Brandon E. Johnson ◽  
Wei-Chih Chen ◽  
Gangqing Hu ◽  
Reinhold Penner ◽  
...  

Multiple myeloma (MM) is a currently incurable hematologic cancer. Patients that initially respond to therapeutic intervention eventually relapse with drug resistant disease. Thus, novel treatment strategies are critically needed to improve patient outcomes. Our group has developed a novel cyclic peptide referred to as MTI-101 for the treatment of MM. We previously reported that acquired resistance to HYD-1, the linear form of MTI-101, correlated with the repression of genes involved in store operated Ca2+ entry (SOCE): PLCβ, SERCA, ITPR3, and TRPC1 expression. In this study, we sought to determine the role of TRPC1 heteromers in mediating MTI-101 induced cationic flux. Our data indicate that, consistent with the activation of TRPC heteromers, MTI-101 treatment induced Ca2+ and Na+ influx. However, replacing extracellular Na+ with NMDG did not reduce MTI-101-induced cell death. In contrast, decreasing extracellular Ca2+ reduced both MTI-101-induced Ca2+ influx as well as cell death. The causative role of TRPC heteromers was established by suppressing STIM1, TRPC1, TRPC4, or TRPC5 function both pharmacologically and by siRNA, resulting in a reduction in MTI-101-induced Ca2+ influx. Mechanistically, MTI-101 treatment induces trafficking of TRPC1 to the membrane and co-immunoprecipitation studies indicate that MTI-101 treatment induces a TRPC1-STIM1 complex. Moreover, treatment with calpeptin inhibited MTI-101-induced Ca2+ influx and cell death, indicating a role of calpain in the mechanism of MTI-101-induced cytotoxicity. Finally, components of the SOCE pathway were found to be poor prognostic indicators among MM patients, suggesting that this pathway is attractive for the treatment of MM.


Sign in / Sign up

Export Citation Format

Share Document