The complex factors that contribute to Clostridium difficile infection

2015 ◽  
Vol 36 (3) ◽  
pp. 104 ◽  
Author(s):  
Kate E Mackin ◽  
Dena Lyras

Over the past decade Clostridium difficile has emerged as a serious public health issue, causing both hospital-based epidemics and community-associated disease. The most commonly recognised cause of antibiotic-associated diarrhoea in the human population, C. difficile was initially seen as a nuisance pathogen causing limited disease in the hospital setting. However, the emergence of ‘hypervirulent' strain types, associated with an increase in both morbidity and mortality, has made it a pathogen of great concern worldwide. Infection with C. difficile is also being increasingly documented in animals, with suggestions that animals destined for human consumption may provide a reservoir for disease. The use of antibiotics is considered the main risk factor for the development of human infection; however, many other factors such as strain type, patient age, and host immune response all contribute to disease caused by C. difficile.

2019 ◽  
Vol 7 (12) ◽  
pp. 667 ◽  
Author(s):  
Melina Kachrimanidou ◽  
Eleni Tzika ◽  
George Filioussis

Clostridioides (Clostridium) difficile is ubiquitous in the environment and is also considered as a bacterium of great importance in diarrhea-associated disease for humans and different animal species. Food animals and household pets are frequently found positive for toxigenic C. difficile without exposing clinical signs of infection. Humans and animals share common C. difficile ribotypes (RTs) suggesting potential zoonotic transmission. However, the role of animals for the development of human infection due to C. difficile remains unclear. One major public health issue is the existence of asymptomatic animals that carry and shed the bacterium to the environment, and infect individuals or populations, directly or through the food chain. C. difficile ribotype 078 is frequently isolated from food animals and household pets as well as from their environment. Nevertheless, direct evidence for the transmission of this particular ribotype from animals to humans has never been established. This review will summarize the current available data on epidemiology, clinical presentations, risk factors and laboratory diagnosis of C. difficile infection in food animals and household pets, outline potential prevention and control strategies, and also describe the current evidence towards a zoonotic potential of C. difficile infection.


2013 ◽  
Vol 76 (2) ◽  
pp. 348-351 ◽  
Author(s):  
CARLOS QUESADA-GÓMEZ ◽  
MICHAEL R. MULVEY ◽  
PABLO VARGAS ◽  
MARÍA del MAR GAMBOA-CORONADO ◽  
CÉSAR RODRÍGUEZ ◽  
...  

We isolated a regional toxigenic genotype of Clostridium difficile, previously found in human infection in 4 of 200 (2%) samples of retail meats for human consumption: 1 of 67 samples of beef, 2 of 66 of pork, and 1 of 67 of poultry meat. These four isolates were positive for the tcdA and tcdB genes but negative for deletion of the tcdC and cdtB genes. All strains induced cytopathic effects in HeLa cells. However, they were susceptible to some antibiotics to which clinical isolates are often resistant. All strains were susceptible to vancomycin, metronidazole, moxifloxacin, and rifampicin but resistant to clindamycin and ciprofloxacin. This first report of isolation of C. difficile in foodstuff from Latin America lends support to the notion that animal products serve as a reservoir for clinical strains of this pathogen in the community.


2012 ◽  
Vol 33 (4) ◽  
pp. 163
Author(s):  
Michelle M Squire ◽  
Thomas V Riley

Clostridium difficile causes infectious diarrhoea in humans and animals. It has been found in pigs, horses, and cattle, suggesting a potential reservoir for human infection, and in 20-40% of meat products in Canada and the USA, suggesting the possibility of food-borne transmission. It is likely that excessive antimicrobial exposure is driving the establishment of C. difficile in animals, in a manner analogous to human infection, rather than the organism just being normal flora of the animal gastrointestinal tract. Outside Australia, PCR ribotype 078 is the most common ribotype of C. difficile found in pigs (83% in one study in the USA) and cattle (up to 100%) and this ribotype is now the third most common ribotype of C. difficile found in humans in Europe. Human and pig strains of C. difficile are genetically identical in Europe confirming that a zoonosis exists. Rates of community-acquired C. difficile infection (CDI) are increasing world-wide, and a new community strain of unidentified origin has recently emerged in Australia. Environmental contamination may also play a role. C. difficile spores survive in treated piggery effluent, the by-products of which are used to irrigate crops and pasture and manufacture compost. There is abundant evidence that food products intended for human consumption contain toxigenic strains of C. difficile but food-borne transmission remains unproven. Thus there are four problems that require resolution: a human health issue, an animal health issue and the factors common to both these problems, environmental contamination and antimicrobial misuse.


2002 ◽  
Vol 15 (1) ◽  
pp. 125-144 ◽  
Author(s):  
Cees M. Verduin ◽  
Cees Hol ◽  
André Fleer ◽  
Hans van Dijk ◽  
Alex van Belkum

SUMMARY Moraxella catarrhalis (formerly known as Branhamella catarrhalis) has emerged as a significant bacterial pathogen of humans over the past two decades. During this period, microbiological and molecular diagnostic techniques have been developed and improved for M. catarrhalis, allowing the adequate determination and taxonomic positioning of this pathogen. Over the same period, studies have revealed its involvement in respiratory (e.g., sinusitis, otitis media, bronchitis, and pneumonia) and ocular infections in children and in laryngitis, bronchitis, and pneumonia in adults. The development of (molecular) epidemiological tools has enabled the national and international distribution of M. catarrhalis strains to be established, and has allowed the monitoring of nosocomial infections and the dynamics of carriage. Indeed, such monitoring has revealed an increasing number of Β-lactamase-positive M. catarrhalis isolates (now well above 90%), underscoring the pathogenic potential of this organism. Although a number of putative M. catarrhalis virulence factors have been identified and described in detail, their relationship to actual bacterial adhesion, invasion, complement resistance, etc. (and ultimately their role in infection and immunity), has been established in a only few cases. In the past 10 years, various animal models for the study of M. catarrhalis pathogenicity have been described, although not all of these models are equally suitable for the study of human infection. Techniques involving the molecular manipulation of M. catarrhalis genes and antigens are also advancing our knowledge of the host response to and pathogenesis of this bacterial species in humans, as well as providing insights into possible vaccine candidates. This review aims to outline our current knowledge of M. catarrhalis, an organism that has evolved from an emerging to a well-established human pathogen.


1994 ◽  
Vol 15 (9) ◽  
pp. 369-371
Author(s):  
Linda S. Nield ◽  
David M. Tejeda ◽  
Lynn C. Garfunkel

This section of Pediatrics in Review reminds clinicians of those conditions that can present in a misleading fashion and require suspicion for early diagnosis. Emphasis has been placed on conditions in which early diagnosis is important and that the general pediatrician might be expected to encounter, at least once in a while. The reader is encouraged to write possible diagnoses for each case before turning to the discussion, which is on the following page. We invite readers to contribute case presentations and discussions. Case 1 Presentation A mother is concerned because her 2-year-old son is "not as sure on his feet as he used to be." In the past 2 weeks she has noticed that he seems clumsy and is falling more than usual when playing or walking. His babysitter also has noticed this change in abilities, heightening the mother's concern. No other neurologic impairment is noted, and his play does not seem disrupted. The boy's medical history is unremarkable. Recently, he had a persistent middle ear infection that finally resolved after 1 month of treatment with three different antibiotics. He also has been having 6 to 12 loose stools a day. Clostridium difficile toxin has been isolated from his stool.


Sign in / Sign up

Export Citation Format

Share Document