scholarly journals Laboratory diagnosis of human infections transmitted by ticks, fleas, mites and lice in Australia

2018 ◽  
Vol 39 (4) ◽  
pp. 182
Author(s):  
John Stenos ◽  
Stephen R Graves

A wide range of human pathogens (viruses, bacteria, protozoa) are transmitted by ticks, fleas, mites and lice worldwide. Some of these infections occur in Australia1, whereas others appear to be absent, although they may occur in returned travellers. The key to diagnosis is two-fold: recognition of the possibility of a vector-borne infection by the treating doctor and confirmation of the diagnosis in a diagnostic, microbiology laboratory. Laboratory diagnostic assays include culture (used rarely), nucleic acid amplification (used increasingly) and serology (used often).

1994 ◽  
Vol 7 (1) ◽  
pp. 89-116 ◽  
Author(s):  
C H Calisher

Of more than 500 arboviruses recognized worldwide, 5 were first isolated in Canada and 58 were first isolated in the United States. Six of these viruses are human pathogens: western equine encephalitis (WEE) and eastern equine encephalitis (EEE) viruses (family Togaviridae, genus Alphavirus), St. Louis encephalitis (SLE) and Powassan (POW) viruses (Flaviviridae, Flavivirus), LaCrosse (LAC) virus (Bunyaviridae, Bunyavirus), and Colorado tick fever (CTF) virus (Reoviridae, Coltivirus). Their scientific histories, geographic distributions, virology, epidemiology, vectors, vertebrate hosts, transmission, pathogenesis, clinical and differential diagnoses, control, treatment, and laboratory diagnosis are reviewed. In addition, mention is made of the Venezuelan equine encephalitis (VEE) complex viruses (family Togaviridae, genus Alphavirus), which periodically cause human and equine disease in North America. WEE, EEE, and SLE viruses are transmitted by mosquitoes between birds; POW and CTF viruses, between wild mammals by ticks; LAC virus, between small mammals by mosquitoes; and VEE viruses, between small or large mammals by mosquitoes. Human infections are tangential to the natural cycle. Such infections range from rare to focal but are relatively frequent where they occur. Epidemics of WEE, EEE, VEE, and SLE viruses have been recorded at periodic intervals, but prevalence of infections with LAC and CTF viruses typically are constant, related to the degree of exposure to infected vectors. Infections with POW virus appear to be rare. Adequate diagnostic tools are available, but treatment is mainly supportive, and greater efforts at educating the public and the medical community are suggested if infections are to be prevented.


2009 ◽  
Vol 22 (4) ◽  
pp. 611-633 ◽  
Author(s):  
Melissa B. Miller ◽  
Yi-Wei Tang

SUMMARY The introduction of in vitro nucleic acid amplification techniques, led by real-time PCR, into the clinical microbiology laboratory has transformed the laboratory detection of viruses and select bacterial pathogens. However, the progression of the molecular diagnostic revolution currently relies on the ability to efficiently and accurately offer multiplex detection and characterization for a variety of infectious disease pathogens. Microarray analysis has the capability to offer robust multiplex detection but has just started to enter the diagnostic microbiology laboratory. Multiple microarray platforms exist, including printed double-stranded DNA and oligonucleotide arrays, in situ-synthesized arrays, high-density bead arrays, electronic microarrays, and suspension bead arrays. One aim of this paper is to review microarray technology, highlighting technical differences between them and each platform's advantages and disadvantages. Although the use of microarrays to generate gene expression data has become routine, applications pertinent to clinical microbiology continue to rapidly expand. This review highlights uses of microarray technology that impact diagnostic microbiology, including the detection and identification of pathogens, determination of antimicrobial resistance, epidemiological strain typing, and analysis of microbial infections using host genomic expression and polymorphism profiles.


2016 ◽  
Vol 1 (2) ◽  
pp. 38-42 ◽  
Author(s):  
Khairun Nessa ◽  
Dilruba Ahmed ◽  
Johirul Islam ◽  
FM Lutful Kabir ◽  
M Anowar Hossain

A multiplex PCR assay was evaluated for diagnosis of diarrheagenic Escherichia coli in stool samples of patients with diarrhoea submitted to a diagnostic microbiology laboratory. Two procedures of DNA template preparationproteinase K buffer method and the boiling method were evaluated to examine isolates of E. coli from 150 selected diarrhoeal cases. By proteinase K buffer method, 119 strains (79.3%) of E. coli were characterized to various categories by their genes that included 55.5% enteroaggregative E. coli (EAEC), 18.5% enterotoxigenic E. coli (ETEC), 1.7% enteropathogenic E. coli (EPEC), and 0.8% Shiga toxin-producing E. coli (STEC). Although boiling method was less time consuming (<24 hrs) and less costly (<8.0 US $/ per test) but was less efficient in typing E. coli compared to proteinase K method (41.3% vs. 79.3% ; p<0.001). The sensitivity and specificity of boiling method compared to proteinase K method was 48.7% and 87.1% while the positive and negative predictive value was 93.5% and 30.7%, respectively. The majority of pathogenic E. coli were detected in children (78.0%) under five years age with 53.3% under one year, and 68.7% of the children were male. Children under 5 years age were frequently infected with EAEC (71.6%) compared to ETEC (24.3%), EPEC (2.7%) and STEC (1.4%). The multiplex PCR assay could be effectively used as a rapid diagnostic tool for characterization of diarrheagenic E. coli using a single reaction tube in the clinical laboratory setting.Bangladesh J Med Microbiol 2007; 01 (02): 38-42


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ana Mafalda Dordio ◽  
Relja Beck ◽  
Telmo Nunes ◽  
Isabel Pereira da Fonseca ◽  
Jacinto Gomes

Abstract Background Canine vector-borne diseases (CVBDs) are caused by a wide range of pathogens transmitted by arthropods. They have been an issue of growing importance in recent years; however, there is limited information about the vector-borne pathogens circulating in Portugal. The aim of the present study was to detect canine vector-borne bacteria and protozoa of veterinary and zoonotic importance using molecular methods. Methods One hundred and forty-two dogs from Lisbon, southern Portugal, were tested: 48 dogs from a veterinary hospital clinically suspected of vector-borne diseases and 94 apparently healthy dogs from shelters. Anaplasma spp./Ehrlichia spp., Babesia/Theileria spp., Hepatozoon spp., and Mycoplasma spp. infections were detected by PCR from blood samples and examined under light microscopy. Other information including clinical status and diagnostic test results were collected for each animal. Results Infections were detected by PCR in 48 (33.80%) dogs. Single infections were found in 35 dogs (24.64%), and co-infections were found in 13 (9.15%) dogs. Twenty-nine (20.42%) dogs were positive for Hepatozoon spp., 15 (10.56%) for Mycoplasma spp., 11 (7.75%) for Anaplasma spp./Ehrlichia spp., and six (4.21%) for Babesia spp. DNA sequencing was used to identify Babesia vogeli (2.81%), Babesia canis (1.40%), Hepatozoon canis (20.42%), Mycoplasma haematoparvum (2.11%), Mycoplasma haemocanis (8.45%), Anaplasma platys (7.04%), and Ehrlichia canis (0.70%). Conclusions This is the first molecular identification of B. canis and M. haematoparvum in dogs from southern Portugal. This study highlights the importance of molecular methods to identify CVBD pathogens in endemic areas and helps to guide the clinical approach of veterinarians in practice.


Author(s):  
Vladimir G. Dedkov ◽  
N’Faly Magassouba ◽  
Olga A. Stukolova ◽  
Victoria A. Savina ◽  
Jakob Camara ◽  
...  

Acute febrile illnesses occur frequently in Guinea. Acute fever itself is not a unique, hallmark indication (pathognomonic sign) of any one illness or disease. In the infectious disease context, fever’s underlying cause can be a wide range of viral or bacterial pathogens, including the Ebola virus. In this study, molecular and serological methods were used to analyze samples from patients hospitalized with acute febrile illness in various regions of Guinea. This analysis was undertaken with the goal of accomplishing differential diagnosis (determination of causative pathogen) in such cases. As a result, a number of pathogens, both viral and bacterial, were identified in Guinea as causative agents behind acute febrile illness. In approximately 60% of the studied samples, however, a definitive determination could not be made.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ranju Ravindran Santhakumari Manoj ◽  
Maria Stefania Latrofa ◽  
Sara Epis ◽  
Domenico Otranto

Abstract Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract


Author(s):  
O.M. Stanishevskaya ◽  
◽  
M.A. Safronova ◽  
G.V. Bratko ◽  
I.Y. Efremova ◽  
...  

Disorders of hemostasis occupy an important place in the structure of vascular diseases and are one of the most frequent pathological conditions encountered in practical medicine. The hemostasis system is naturally the most vulnerable system of the body. Violations of its balance are found in a wide variety of physiological and pathological conditions of the body. It is not uncommon for the first debut of decompensation to lead to an ophthalmologist. In the practice of an ophthalmologist, there are diseases when it is necessary to pay close attention to thrombophilic conditions. Changes in the hemostatic system, affect a wide range of vascular diseases of the eyeball. Recognition of the type of thrombophilia and its timely laboratory diagnosis in patients with vascular diseases of the retina and optic nerve are important in achieving the best treatment results. Multidisciplinary approach to the treatment of vascular diseases of the eyeball and modern diagnostics, including the study of hemostasis, is necessary and relevant to achieve the best clinical and functional treatment result. Timely and correct orientation of patients in vascular pathology is extremely important due to the fact that concomitant systemic pathology can aggravate the course of the disease, therefore, the choice of treatment tactics for this category of patients should be carried out in conjunction with a therapist, cardiologist, hematologist and endocrinologist. Key words: hemostasis, thrombosis CVS, diabet, primary open-angle glaucoma thrombodynamica, cardiovascular pathology.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Gregory A. DeIulio ◽  
Li Guo ◽  
Yong Zhang ◽  
Jonathan M. Goldberg ◽  
H. Corby Kistler ◽  
...  

ABSTRACTTheFusarium oxysporumspecies complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12F. oxysporumisolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall,F. oxysporumkinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of theF. oxysporumkinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individualF. oxysporumisolates with an enhanced and unique capacity for environmental perception and associated downstream responses.IMPORTANCEIsolates ofFusarium oxysporumare adapted to survive a wide range of host and nonhost conditions. In addition,F. oxysporumwas recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12F. oxysporumisolates and highlighted kinase families that distinguishF. oxysporumfrom other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly setsFusariumapart from otherAscomycetes. Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.


Author(s):  
Timothy J.J. Inglis ◽  
Dionne B. Rolim ◽  
Jorge L.N. Rodriguez

Melioidosis is an emerging infection in Brazil and neighbouring South American countries. The wide range of clinical presentations include severe community-acquired pneumonia, septicaemia, central nervous system infection and less severe soft tissue infection. Diagnosis depends heavily on the clinical microbiology laboratory for culture. Burkholderia pseudomallei, the bacterial cause of melioidosis, is easily cultured from blood, sputum and other clinical samples. However, B. pseudomallei can be difficult to identify reliably, and can be confused with closely related bacteria, some of which may be dismissed as insignificant culture contaminants. Serological tests can help to support a diagnosis of melioidosis, but by themselves do not provide a definitive diagnosis. The use of a laboratory discovery pathway can help reduce the risk of missing atypical B. pseudomallei isolates. Recommended antibiotic treatment for severe infection is either intravenous Ceftazidime or Meropenem for several weeks, followed by up to 20 weeks oral treatment with a combination of trimethoprim-sulphamethoxazole and doxycycline. Consistent use of diagnostic microbiology to confirm the diagnosis, and rigorous treatment of severe infection with the correct antibiotics in two stages; acute and eradication, will contribute to a reduction in mortality from melioidosis.


Author(s):  
Svetlana A. Gordeeva ◽  
A.Yu. Zolotarev ◽  
M.G. Movsisyan ◽  
A.V. Rozinko

Objective. Assessment of bacterial identification effectiveness in clinical microbiology laboratory using the MALDI-MS based system BactoSCREEN. Materials and Methods. Bacteriological testing was done by the cultivation on Сolumbia agar with 5% of sheep blood (at 37°C for 24 hours). Colonies for identification were selected based on their growth pattern, type of hemolysis, morphology and consistency. The species identification was done by the MALDI-MS using the microbiology analyzer BactoSCREEN. Apart from MALDI-MS, we used morphology and biochemical methods for species identification when necessary. Serological tests were used for serovar and biovar identifications. Results. A total of 85945 bacterial identifications was performed in 2018. When compared to 2017, the throughput of the laboratory increased ten times. A total of 23252 isolates were obtained in the previously mentioned period. A single identification took 2.98–13.22 minutes including time for supporting procedures, whereas the staff time for one identification itself constituted an average of 1.55 minutes. When compared to manual methods, introduction of mass-spectrometry allowed us to achieve 3.5-fold decrease of the staff time in the average. Therefore, annual labor saving in terms of staffing corresponds to 11 full-time positions. Conclusions. In view of high throughput, analysis speed, simplicity and low cost of sample preparation, MALDI-MS identification fits well into the practice of clinical microbiology laboratory, especially when large-scale screening studies of bacterial cultures are required. The use of MALDI-MS is likely to be most promising when carrying out microbiological monitoring that is traditionally associated with large number of samples and wide range of microorganisms detected.


Sign in / Sign up

Export Citation Format

Share Document