Variable discharge alters habitat suitability for benthic algae and cyanobacteria in a forested Mediterranean stream

2010 ◽  
Vol 61 (4) ◽  
pp. 441 ◽  
Author(s):  
Elisabet Tornés ◽  
Sergi Sabater

Large-scale algal community patterns can be understood by studying organisation within patches. Spatial heterogeneity in light and substratum type may affect the biomass and community composition of benthic algae and cyanobacteria. We compared the effects of these factors at the species level in two reaches differing in canopy cover in a forested Mediterranean stream in winter (high water flow) and late spring (low water flow). Partial redundancy analyses revealed that the major determinants of species distribution were strongly associated with variations in measured environmental variables. Light availability, the Reynolds number and substratum type were the main factors accounting for the algal and cyanobacterial distribution. Factors affecting algal distribution varied between hydrological periods, suggesting that some species had specific requirements whereas others had a wider tolerance to environmental conditions. Our results demonstrated that the hydraulic conditions (low velocity v. high velocity) influence small-scale heterogeneity in streams, and that this affects benthic community distribution.

2009 ◽  
Vol 633 ◽  
pp. 191-231 ◽  
Author(s):  
MARCO SIMIANO ◽  
D. LAKEHAL ◽  
M. LANCE ◽  
G. YADIGAROGLU

The detailed investigation of an unstable meandering bubble plume created in a 2-m-diameter vessel with a water depth of 1.5 m is reported for void fractions up to 4% and bubble size of the order of 2.5 mm. Simultaneous particle image velocity (PIV) measurements of bubble and liquid velocities and video recordings of the projection of the plume on two vertical perpendicular planes were produced in order to characterize the state of the plume by the location of its centreline and its equivalent diameter. The data were conditionally ensemble averaged using only PIV sets corresponding to plume states in a range as narrow as possible, separating the small-scale fluctuations of the flow from the large-scale motions, namely plume meandering and instantaneous cross-sectional area fluctuations. Meandering produces an apparent spreading of the average plume velocity and void fraction profiles that were shown to remain self-similar in the instantaneous plume cross-section. Differences between the true local time-average relative velocities and the difference of the averaged phase velocities were measured; the complex variation of the relative velocity was explained by the effects of passing vortices and by the fact that the bubbles do not reach an equilibrium velocity as they migrate radially, producing momentum exchanges between high- and low-velocity regions. Local entrainment effects decrease with larger plume diameters, contradicting the classical dependence of entrainment on the time-averaged plume diameter. Small plume diameters tend to trigger ‘entrainment eddies’ that promote the inward-flow motion. The global turbulent kinetic energy was found to be dominated by the vertical stresses. Conditional averages according to the plume diameter showed that the large-scale motions did not affect the instantaneous turbulent kinetic energy distribution in the plume, suggesting that large scales and small scales are not correlated. With conditional averaging, meandering was a minor effect on the global kinetic energy and the Reynolds stresses. In contrast, plume diameter fluctuations produce a substantial effect on these quantities.


2020 ◽  
Author(s):  
Vinicius Beltram Tergolina ◽  
Stefano Berti ◽  
Gilmar Mompean

<p>When studying the life cycle of phytoplankton frequently one is interested in the survival or death conditions of a population (bloom/no bloom). These dynamics have been studied extensively in the literature through a range of modelling scenarios but in summary the main factors affecting the vertical dynamics are: Water column mixing intensity, solar energy distribution, nutrients availability and predatory activity. The later two can be represented by different biological models whereas the vertical mixing is usually parameterized by a diffusive process. Even though turbulence has been recognized as a paramount factor in the survival dynamics of sinking phytoplankton species, dealing with the multi scale nature of turbulence is a formidable challenge from the modelling point of view. In addition, convective motions are being recognized to play a role in the survival of phytoplankton throughout winter stocking. With this in mind, in this work we revisit a theoretically appealing  model for phytoplankton vertical dynamics with turbulent diffusivity and numerically study how large-scale fluid motions affect its survival and extinction conditions. To achieve this and to work with realistic parameter values, we adopt a kinematic flow field to account for the different spatial and temporal scales of turbulent motions. The dynamics of the population density are described by a reaction-advection-diffusion model with a growth term proportional to sun light availability. Light depletion is modelled accounting for water turbidity and plankton self-shading; advection is represented by a sinking speed and a two-dimensional, multiscale, chaotic flow. Preliminary results show that under appropriate conditions for the flow, our model reproduces past results based on turbulent diffusivity. Furthermore, the presence of large scale vortices (such as those one might expect during winter convection) seems to hinder survival, an effect that is partially mitigated by turbulent  diffusion.</p>


2018 ◽  
Vol 3 (1) ◽  
pp. 35 ◽  
Author(s):  
Satria Candra Laksmana ◽  
A'rasy Fahruddin ◽  
Ali Akbar

The potential of hydro energy is very large both for large scale and for small scale. Until now, the need for energy continues to increase, so that energy is a very important element in the development of a country or a region. Cross-flow turbines are one type of turbine that is often used for PLTMH. In this study planning a cross-flow water turbine applied to the height and amount of water per second in the irrigation channel water flow, this water flow will rotate the turbine shaft to produce mechanical energy. With variations in the direction of the turbine flow direction, namely 30o, 35o, and 40o, and the same variation of water discharge 10,5 L / s, 21 L / s and 31,5 L / s to determine the effect on the rotation and the power produced. In this study with 12 turbine blades, 30o blade angle, 40o flow direction angle, and 31.5 L / s water discharge obtained the highest first stage turbine rotation value is 478 rpm. Whereas at the flow direction angle of 30o with the same water discharge which is 31.5 L / s so that the first stage of the turbine is obtained is 296 rpm.


2000 ◽  
Vol 45 (4) ◽  
pp. 396-398
Author(s):  
Roger Smith
Keyword(s):  

2020 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Evi Rahmawati ◽  
Irnin Agustina Dwi Astuti ◽  
N Nurhayati

IPA Integrated is a place for students to study themselves and the surrounding environment applied in daily life. Integrated IPA Learning provides a direct experience to students through the use and development of scientific skills and attitudes. The importance of integrated IPA requires to pack learning well, integrated IPA integration with the preparation of modules combined with learning strategy can maximize the learning process in school. In SMP 209 Jakarta, the value of the integrated IPA is obtained from 34 students there are 10 students completed and 24 students are not complete because they get the value below the KKM of 68. This research is a development study with the development model of ADDIE (Analysis, Design, Development, Implementation, and Evaluation). The use of KPS-based integrated IPA modules (Science Process sSkills) on the theme of rainbow phenomenon obtained by media expert validation results with an average score of 84.38%, average material expert 82.18%, average linguist 75.37%. So the average of all aspects obtained by 80.55% is worth using and tested to students. The results of the teacher response obtained 88.69% value with excellent criteria. Student responses on a small scale acquired an average score of 85.19% with highly agreed criteria and on the large-scale student response gained a yield of 86.44% with very agreed criteria. So the module can be concluded receiving a good response by the teacher and students.


2019 ◽  
Vol 61 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Loretta Lees

Abstract Gentrification is no-longer, if it ever was, a small scale process of urban transformation. Gentrification globally is more often practised as large scale urban redevelopment. It is state-led or state-induced. The results are clear – the displacement and disenfranchisement of low income groups in favour of wealthier in-movers. So, why has gentrification come to dominate policy making worldwide and what can be done about it?


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Bùi Thị Bích Lan

In Vietnam, the construction of hydropower projects has contributed significantly in the cause of industrialization and modernization of the country. The place where hydropower projects are built is mostly inhabited by ethnic minorities - communities that rely primarily on land, a very important source of livelihood security. In the context of the lack of common productive land in resettlement areas, the orientation for agricultural production is to promote indigenous knowledge combined with increasing scientific and technical application; shifting from small-scale production practices to large-scale commodity production. However, the research results of this article show that many obstacles in the transition process are being posed such as limitations on natural resources, traditional production thinking or the suitability and effectiveness of scientific - technical application models. When agricultural production does not ensure food security, a number of implications for people’s lives are increasingly evident, such as poverty, preserving cultural identity, social relations and resource protection. Since then, it has set the role of the State in researching and building appropriate agricultural production models to exploit local strengths and ensure sustainability.


2018 ◽  
Vol 1 (3) ◽  
pp. 156-165 ◽  
Author(s):  
Nasirudeen Abdul Fatawu

Recent floods in Ghana are largely blamed on mining activities. Not only are lives lost through these floods, farms andproperties are destroyed as a result. Water resources are diverted, polluted and impounded upon by both large-scale minersand small-scale miners. Although these activities are largely blamed on behavioural attitudes that need to be changed, thereare legal dimensions that should be addressed as well. Coincidentally, a great proportion of the water resources of Ghana arewithin these mining areas thus the continual pollution of these surface water sources is a serious threat to the environmentand the development of the country as a whole. The environmental laws need to be oriented properly with adequate sanctionsto tackle the impacts mining has on water resources. The Environmental Impact Assessment (EIA) procedure needs to bestreamlined and undertaken by the Environmental Protection Agency (EPA) and not the company itself.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


Sign in / Sign up

Export Citation Format

Share Document