scholarly journals Aquatic ecosystems in inland Australia: tourism and recreational significance, ecological impacts and imperatives for management

2012 ◽  
Vol 63 (4) ◽  
pp. 325 ◽  
Author(s):  
Wade L. Hadwen ◽  
Paul I. Boon ◽  
Angela H. Arthington

The value of aquatic systems for biodiversity, agriculture, pastoralism and mining is widely recognised, whereas their significance for tourism and recreation is often poorly acknowledged. We surveyed protected-area managers, local governments and tour operators (river and general) to determine how aquatic systems were used in inland Australia for tourism and recreation and the perceived impacts of these uses. Inland waterbodies were reported by all respondent groups to be highly significant foci for visitors. Natural features were rated as more important to visitors than infrastructure by protected-area managers and river-tour operators, whereas all respondent groups identified water clarity, water quality and accessibility to water as important aspects of visitor appeal. Although >75% of respondents nominated visitors as being environmentally aware, visitors were reported to have a range of negative effects on the ecological condition of inland waterbodies, especially on water quality, and to also increase erosion and the loss of fringing vegetation. Managing the recreational use of inland waterbodies will become increasingly important as demand from all sectors intensifies and climate-change impacts become more severe. Management must take into account variations in perceptions by different stakeholder groups and the paradox of inappropriate visitor behaviour despite visitors’ apparent environmental awareness.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (9) ◽  
pp. 51-60
Author(s):  
DENNIS VOSS ◽  
HANS-JOACHIM PUTZ ◽  
SAMUEL SCHABEL

The need for deinking mills to reduce their fresh water consumption has resulted in higher loads of various contaminants in the process water. Lower recovered paper quality also leads to higher contamination levels in the mills. This higher load has an influence on achievable target brightness. The objective of the work was to determine and explain the main reasons for relatively poor deinked pulp quality or poor deinking potential based on the influence of recovered paper composition and process water quality. The process water parameters significantly affect the deinking potential of recovered paper. The test results showed the negative effects of increased water hardness. For standard recovered paper mixtures, flotation selectivity is higher with increasing flotation pH-value. Good results were realized for standard recovered paper with low hardness, low surface tension, and high pH-value. The results for recovered paper containing flexo newsprint could be slightly improved with low hardness, low surface tension, and low pH-value. The results of the test program using design of experiments showed interacting effects of pH-value and surface tension on luminosity and flotation selectivity.



2020 ◽  
Vol 640 ◽  
pp. 79-105
Author(s):  
ET Porter ◽  
E Robins ◽  
S Davis ◽  
R Lacouture ◽  
JC Cornwell

Anthropogenic disturbances in the Chesapeake Bay (USA) have depleted eastern oyster Crassostrea virginica abundance and altered the estuary’s environment and water quality. Efforts to rehabilitate oyster populations are underway; however, the effect of oyster biodeposits on water quality and plankton community structure are not clear. In July 2017, we used 6 shear turbulence resuspension mesocosms (STURMs) to determine differences in plankton composition with and without the daily addition of oyster biodeposits to a muddy sediment bottom. STURM systems had a volume-weighted root mean square turbulent velocity of 1.08 cm s-1, energy dissipation rate of ~0.08 cm2 s-3, and bottom shear stress of ~0.36-0.51 Pa during mixing-on periods during 4 wk of tidal resuspension. Phytoplankton increased their chlorophyll a content in their cells in response to low light in tanks with biodeposits. The diatom Skeletonema costatum bloomed and had significantly longer chains in tanks without biodeposits. These tanks also had significantly lower concentrations of total suspended solids, zooplankton carbon, and nitrite +nitrate, and higher phytoplankton carbon concentrations. Results suggest that the absence of biodeposit resuspension initiates nitrogen uptake for diatom reproduction, increasing the cell densities of S. costatum. The low abundance of the zooplankton population in non-biodeposit tanks suggests an inability of zooplankton to graze on S. costatum and negative effects of S. costatum on zooplankton. A high abundance of the copepod Acartia tonsa in biodeposit tanks may have reduced S. costatum chain length. Oyster biodeposit addition and resuspension efficiently transferred phytoplankton carbon to zooplankton carbon, thus supporting the food web in the estuary.



2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.



1992 ◽  
Vol 27 (2) ◽  
pp. 301-310
Author(s):  
Agnes G. Pulvermüller ◽  
Heidulf E. Müller

Abstract The survey of the ecological condition of eight lakes within the city limits of Freiburg included hydrochemical measurements and analyses (oxygen profiles, Secchi depth, pH, biochemical oxygen demand) together with biological parameters (chlorophyll a, phytoplanktonbiomass, Escherichia coli counts), as well as parasitic examinations. Only some of the investigated parameters are presented here. Seven of the eight lakes were found to be eutrophic. The process of eutrophication appears to be still in progress. One lake can be considered to be hypertrophic. Schistosome dermatitis was observed. The water quality in general was considered to be acceptable; suggestions to maintain or improve the water quality are made.



1993 ◽  
Vol 28 (3-5) ◽  
pp. 441-449 ◽  
Author(s):  
Paul J. Garrison ◽  
Timothy R. Asplund

Nonpoint source controls were installed in a 1215 ha agricultural watershed in northeastern Wisconsin in the late 1970. Changes were made in handling of animal wastes and cropping practices to reduce runoff of sediment and nutrients. Modelling results predicted a reduction in phosphorus runoff of 30 percent. The water quality of White Clay Lake has worsened since the installation of NPS controls. The lake's phosphorus concentration has increased from a mean of 29 µg L−1 in the late 1970s to 44 µg L−1 in recent years. Water clarity has declined from 2.7 to 2.1 m and the mean summer chlorophyll levels have increased from 9 to 13 µg L−1 with peak values exceeding 40 µg L−1. Increased phosphorus loading is not the result of elevated precipitation but instead the failure of the control measures to sufficiently reduce P loading. Most of the effort was placed on structural changes while most of the P loading comes from cropland runoff. Further, soil phosphorus concentrations have increased because of artificial fertilizers and manure spreading. The White Clay Lake experience is discouraging since the majority of the polluters in this watershed utilized some NPS control practices, including 76 percent of the farms which installed waste management control facilities.



2021 ◽  
Author(s):  
Paul P. J. Gaffney ◽  
Mark H. Hancock ◽  
Mark A. Taggart ◽  
Roxane Andersen

AbstractThe restoration of drained afforested peatlands, through drain blocking and tree removal, is increasing in response to peatland restoration targets and policy incentives. In the short term, these intensive restoration operations may affect receiving watercourses and the biota that depend upon them. This study assessed the immediate effect of ‘forest-to-bog’ restoration by measuring stream and river water quality for a 15 month period pre- and post-restoration, in the Flow Country peatlands of northern Scotland. We found that the chemistry of streams draining restoration areas differed from that of control streams following restoration, with phosphate concentrations significantly higher (1.7–6.2 fold, mean 4.4) in restoration streams compared to the pre-restoration period. This led to a decrease in the pass rate (from 100 to 75%) for the target “good” quality threshold (based on EU Water Framework Directive guidelines) in rivers in this immediate post-restoration period, when compared to unaffected river baseline sites (which fell from 100 to 90% post-restoration). While overall increases in turbidity, dissolved organic carbon, iron, potassium and manganese were not significant post-restoration, they exhibited an exaggerated seasonal cycle, peaking in summer months in restoration streams. We attribute these relatively limited, minor short-term impacts to the fact that relatively small percentages of the catchment area (3–23%), in our study catchments were felled, and that drain blocking and silt traps, put in place as part of restoration management, were likely effective in mitigating negative effects. Looking ahead, we suggest that future research should investigate longer term water quality effects and compare different ways of potentially controlling nutrient release.



2015 ◽  
Vol 23 (4) ◽  
pp. 443-460 ◽  
Author(s):  
Michael J. Lawrence ◽  
Holly L.J. Stemberger ◽  
Aaron J. Zolderdo ◽  
Daniel P. Struthers ◽  
Steven J. Cooke

War is an ever-present force that has the potential to alter the biosphere. Here we review the potential consequences of modern war and military activities on ecosystem structure and function. We focus on the effects of direct conflict, nuclear weapons, military training, and military produced contaminants. Overall, the aforementioned activities were found to have overwhelmingly negative effects on ecosystem structure and function. Dramatic habitat alteration, environmental pollution, and disturbance contributed to population declines and biodiversity losses arising from both acute and chronic effects in both terrestrial and aquatic systems. In some instances, even in the face of massive alterations to ecosystem structure, recovery was possible. Interestingly, military activity was beneficial under specific conditions, such as when an exclusion zone was generated that generally resulted in population increases and (or) population recovery; an observation noted in both terrestrial and aquatic systems. Additionally, military technological advances (e.g., GPS technology, drone technology, biotelemetry) have provided conservation scientists with novel tools for research. Because of the challenges associated with conducting research in areas with military activities (e.g., restricted access, hazardous conditions), information pertaining to military impacts on the environment are relatively scarce and are often studied years after military activities have ceased and with no knowledge of baseline conditions. Additional research would help to elucidate the environmental consequences (positive and negative) and thus reveal opportunities for mitigating negative effects while informing the development of optimal strategies for rehabilitation and recovery.



Toxics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 109
Author(s):  
Yahya Al Naggar ◽  
Markus Brinkmann ◽  
Christie M. Sayes ◽  
Saad N. AL-Kahtani ◽  
Showket A. Dar ◽  
...  

Microplastics (MPs) are ubiquitous and persistent pollutants, and have been detected in a wide variety of media, from soils to aquatic systems. MPs, consisting primarily of polyethylene, polypropylene, and polyacrylamide polymers, have recently been found in 12% of samples of honey collected in Ecuador. Recently, MPs have also been identified in honey bees collected from apiaries in Copenhagen, Denmark, as well as nearby semiurban and rural areas. Given these documented exposures, assessment of their effects is critical for understanding the risks of MP exposure to honey bees. Exposure to polystyrene (PS)-MPs decreased diversity of the honey bee gut microbiota, followed by changes in gene expression related to oxidative damage, detoxification, and immunity. As a result, the aim of this perspective was to investigate whether wide-spread prevalence of MPs might have unintended negative effects on health and fitness of honey bees, as well as to draw the scientific community’s attention to the possible risks of MPs to the fitness of honey bees. Several research questions must be answered before MPs can be considered a potential threat to bees.



Sign in / Sign up

Export Citation Format

Share Document