Assessing aquatic ecosystem health through the analysis of plankton biodiversity

2019 ◽  
Vol 70 (5) ◽  
pp. 647 ◽  
Author(s):  
N. F. Shao ◽  
S. T. Yang ◽  
Y. Sun ◽  
Y. Gai ◽  
C. S. Zhao ◽  
...  

Healthy plankton communities are the foundation of many freshwater food webs. Their biodiversity is often used to directly reflect the health of the rivers. Globally, river ecosystem restoration is a critical issue and many freshwater ecosystems, especially in cities, are degraded because of intensive human activities. This is true for Jinan, China’s first pilot city for the Water Ecological Civilisation Project. The outcomes of aquatic ecosystem restoration in the city will directly affect the success or failure of the construction of aquatic ecological civilisations across the entire country; therefore, there is an urgent need for research on the assessment of river health in Jinan based on plankton biodiversity. As such, this study gathered data on the distribution of plankton (phytoplankton and zooplankton) in Jinan by collecting three sets of samples from 59 aquatic ecosystem monitoring stations in spring, summer and autumn of 2015. In all, 104 species of phytoplankton and 56 species of zooplankton were identified. Diatoms, Chlorophyta, and Cyanophyta accounted for 50, 31 and 15% respectively of phytoplankton, and rotifers, Protozoa and cladocerans accounted for 39, 31 and 17% respectively of zooplankton. We constructed a plankton health assessment model based on the Shannon–Wiener diversity index for analysis of the temporal and spatial distribution. According to the overall health distribution diagram, spatially health status was significantly better in north and south Jinan than in the city centre; temporally, spring water ecosystem health was better than in summer and autumn. These conclusions provide a theoretical basis and direction for the restoration of aquatic ecosystems in Jinan, and the methods used in this study can serve as a reference for aquatic ecosystem evaluation in developing countries.

2019 ◽  
Vol 20 (2) ◽  
pp. 489-496
Author(s):  
RIDA OKTORIDA KHASTINI ◽  
INDAH JUWITA SARI ◽  
YOLA HERYSCA ◽  
SITI SULASANAH

Abstract. Khastini RO, Sari IJ, Herysca Y, Sulasanah S. 2018. Lichen diversity as indicators for monitoring ecosystem health in Rawa Danau Nature Reserve, Banten, Indonesia. Biodiversitas 19: 489-496. Study on environmental changes is very important in present circumstances throughout the world. Lichen biodiversity may provide an excellent measure in bio-monitoring on the ecosystem health of nature reserve areas such as Rawa Danau in Banten Province, Indonesia. At present, this area is highly disturbed due to ecological factors and human activities such as land use for agricultural land and residential area. The objective of this research is to provide the information needed for assessing ecosystem health which will be revealed by the diversity of lichens in the study area. The study was conducted using transect-based plot in three landscapes: residential area, primary forest and secondary forest, while exploration technique was carried out in freshwater swamp area. The cover for lichen species in the substrates and the number of species present were recorded. Shannon-Wiener diversity index was also calculated. A total of 86 specimens were collected from these four areas which resulted in the occurrence of 25 species of lichens belonging to 20 genera and 14 families. Shannon-Winner’s diversity index are ranging from 1.7197 at residential area to 2.6678 at swamp area. The variation in species composition is likely associated with the abiotic and biotic factors of each landscape with the differences in lichen diversity across landscapes suggest an altered environmental condition of in Rawa Danau. The results of this study can be used as baseline information of ecosystem health of Rawa Danau Nature Reserve in the face of future environmental changes.


Life Science ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Husna Mafaza ◽  
Murningsih Murningsih ◽  
Jumari Jumari

Lichen is often used as a bioindicator of air pollution in an area because it is sensitive to pollution. The morphological structure of lichen that does not have a cuticle, stomata, and absorptive organ, forces lichens to survive under the stress of pollutants found in the air. The sensitivity of lichen to air pollution can be seen through changes in diversity. The purpose of this study was to examine the diversity of species of lichens, to assess the environmental conditions and shade trees as habitat for lichens in the city of Semarang. The research was conducted from October to November 2017 using the purposive random sampling method. Sampling was conducted at three research stations, namely: Mangkang Terminal, Simpang Lima Area, and Undalang Tembalang Campus. Based on the results of research at the three observation stations, 18 lichen species were obtained, 13 species were identified and 5 species were not identified. Lichen obtained as many as 8 families, namely Arthoniaceae, Caloplacaceae, Physciaceae, Graphidaceae, Lecanoraceae, Lecidellaceae, Leprariaceae and Parmeliaceae. These types of lichen belong to the talus group foliose and crustose. The shade tree that is most overgrown with lichens is mahogany (Swietenia mahagoni). The Shannon-Wiener diversity index values in the three research stations were: Terminal Mangkang (1.88), Simpang Lima Region (2.95), and Undip Tembalang Campus (3.71). The highest number of species and number of individuals is at the Undip Tembalang Campus, with a total of 17 species and 295 individuals lichen. Dirinaria spp. is the most found species in all three research stations.   Lichen sering dipakai sebagai bioindikator pencemaran udara di suatu daerah karena sifatnya yang sensitif terhadap polusi. Struktur morfologi lichen yang tidak memiliki lapisan kutikula, stomata, dan organ absorptif, memaksa lichen untuk bertahan hidup di bawah cekaman polutan yang terdapat di udara. Sensitivitas lichen terhadap pencemaran udara dapat dilihat melalui perubahan keanekaragamannya. Tujuan dari penelitian ini adalah untuk mengkaji keanekaragaman jenis lichen, mengkaji kondisi lingkungan dan pohon peneduh sebagai habitat lichen di Kota Semarang. Penelitian dilaksanakan pada bulan Oktober hingga November 2017 menggunakan metode purposive random sampling. Sampling dilakukan di tiga stasiun penelitian, yakni: Terminal Mangkang, Kawasan Simpang Lima, dan Kampus Undip Tembalang. Berdasarkan hasil penelitian di ketiga stasiun pengamatan, diperoleh 18 spesies lichen, 13 spesies berhasil diidentifikasi dan 5 spesies belum teridentifikasi. Lichen yang diperoleh sebanyak 8 famili yakni Arthoniaceae, Caloplacaceae, Physciaceae, Graphidaceae, Lecanoraceae, Lecidellaceae, Leprariaceae dan Parmeliaceae. Jenis lichen tersebut termasuk dalam kelompok talus foliose dan crustose. Pohon peneduh yang paling banyak ditumbuhi lichen adalah mahoni (Swietenia mahagoni). Nilai indeks keanekaragaman Shannon-Wiener di ketiga stasiun penelitian yaitu: Terminal Mangkang (1,88), Kawasan Simpang Lima (2,95), dan Kampus Undip Tembalang (3,71). Jumlah jenis dan jumlah individu tertinggi terdapat di Kampus Undip Tembalang, dengan total 17 spesies dan 295 individu lichen. Dirinaria spp. merupakan spesies yang paling banyak ditemukan di ketiga stasiun penelitian.


2015 ◽  
Vol 10 (2) ◽  
pp. 500-508 ◽  
Author(s):  
R. R Bhagawati ◽  
Susmita Gupta

This study investigated the ecosystem health of a floodplain lake, Tamrangabeel of Bongaigaon district, Assam, India using aquatic insects as bioindicator. The aquatic community of Tamrangabeel was represented by 37 species belonging to 19 families and 5 orders. Shannon –Wiener diversity index (Shannon Hꞌ) values were recorded less than 1 in all the sites of the lake which indicated perturbed condition of the lake. Order Hemiptera was found to be the largest order with highest number of species. Eudominant species recorded in this lake were Micronecta siva (order Hemiptera) and Cloeon sp. (order Ephemeroptera). Biological Monitoring Working Party (BMWP) Score, Average Score per taxon (ASPT), and Stream Invertebrate Grade Number-Average Level (SIGNAL) Score reported from the study reflected good ecological potential as well as slightly impacted nature of the water body. The values of different environmental variables of water of all the sites of the lake were found conducive for aquatic life. This study provided an early warning of perturbation of the lake which is to be addressed before it is too late.


Author(s):  
Rafael Salas ◽  
María José Pérez Villadóniga ◽  
Juan Prieto Rodríguez ◽  
Ana Russo
Keyword(s):  

2020 ◽  
Vol 46 (1) ◽  
pp. 55-75
Author(s):  
Ying Long ◽  
Jianting Zhao

This paper examines how mass ridership data can help describe cities from the bikers' perspective. We explore the possibility of using the data to reveal general bikeability patterns in 202 major Chinese cities. This process is conducted by constructing a bikeability rating system, the Mobike Riding Index (MRI), to measure bikeability in terms of usage frequency and the built environment. We first investigated mass ridership data and relevant supporting data; we then established the MRI framework and calculated MRI scores accordingly. This study finds that people tend to ride shared bikes at speeds close to 10 km/h for an average distance of 2 km roughly three times a day. The MRI results show that at the street level, the weekday and weekend MRI distributions are analogous, with an average score of 49.8 (range 0–100). At the township level, high-scoring townships are those close to the city centre; at the city level, the MRI is unevenly distributed, with high-MRI cities along the southern coastline or in the middle inland area. These patterns have policy implications for urban planners and policy-makers. This is the first and largest-scale study to incorporate mobile bike-share data into bikeability measurements, thus laying the groundwork for further research.


2021 ◽  
Vol 13 (2) ◽  
pp. 826
Author(s):  
Meiling Zhou ◽  
Xiuli Feng ◽  
Kaikai Liu ◽  
Chi Zhang ◽  
Lijian Xie ◽  
...  

Influenced by climate change, extreme weather events occur frequently, and bring huge impacts to urban areas, including urban waterlogging. Conducting risk assessments of urban waterlogging is a critical step to diagnose problems, improve infrastructure and achieve sustainable development facing extreme weathers. This study takes Ningbo, a typical coastal city in the Yangtze River Delta, as an example to conduct a risk assessment of urban waterlogging with high-resolution remote sensing images and high-precision digital elevation models to further analyze the spatial distribution characteristics of waterlogging risk. Results indicate that waterlogging risk in the city proper of Ningbo is mainly low risk, accounting for 36.9%. The higher-risk and medium-risk areas have the same proportions, accounting for 18.7%. They are followed by the lower-risk and high-risk areas, accounting for 15.5% and 9.6%, respectively. In terms of space, waterlogging risk in the city proper of Ningbo is high in the south and low in the north. The high-risk area is mainly located to the west of Jiangdong district and the middle of Haishu district. The low-risk area is mainly distributed in the north of Jiangbei district. These results are consistent with the historical situation of waterlogging in Ningbo, which prove the effectiveness of the risk assessment model and provide an important reference for the government to prevent and mitigate waterlogging. The optimized risk assessment model is also of importance for waterlogging risk assessments in coastal cities. Based on this model, the waterlogging risk of coastal cities can be quickly assessed, combining with local characteristics, which will help improve the city’s capability of responding to waterlogging disasters and reduce socio-economic loss.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1465
Author(s):  
Chao Shen ◽  
Liuyan Huang ◽  
Guangwu Xie ◽  
Yulai Wang ◽  
Zongkai Ma ◽  
...  

Increasing discharge of plastic debris into aquatic ecosystems and the worsening ecological risks have received growing attention. Once released, plastic debris could serve as a new substrate for microbes in waters. The complex relationship between plastics and biofilms has aroused great interest. To confirm the hypothesis that the presence of plastic in water affects the composition of biofilm in natural state, in situ biofilm culture experiments were conducted in a lake for 40 days. The diversity of biofilm attached on natural (cobble stones (CS) and wood) and plastic substrates (Polyethylene terephthalate (PET) and Polymethyl methacrylate (PMMA)) were compared, and the community structure and composition were also analyzed. Results from high-throughput sequencing of 16S rRNA showed that the diversity and species richness of biofilm bacterial communities on natural substrate (observed species of 1353~1945, Simpson index of 0.977~0.989 and Shannon–Wiener diversity index of 7.42~8.60) were much higher than those on plastic substrates (observed species of 900~1146, Simpson index of 0.914~0.975 and Shannon–Wiener diversity index of 5.47~6.99). The NMDS analyses were used to confirm the taxonomic significance between different samples, and Anosim (p = 0.001, R = 0.892) and Adonis (p = 0.001, R = 808, F = 11.19) demonstrated that this classification was statistically rigorous. Different dominant bacterial communities were found on plastic and natural substrates. Alphaproteobacterial, Betaproteobacteria and Synechococcophycideae dominated on the plastic substrate, while Gammaproteobacteria, Phycisphaerae and Planctomycetia played the main role on the natural substrates. The bacterial community structure of the two substrates also showed significant difference which is consistent with previous studies using other polymer types. Our results shed light on the fact that plastic debris can serve as a new habitat for biofilm colonization, unlike natural substrates, pathogens and plastic-degrading microorganisms selectively attached to plastic substrates, which affected the bacterial community structure and composition in aquatic environment. This study provided a new insight into understanding the potential impacts of plastics serving as a new habitat for microbial communities in freshwater environments. Future research should focus on the potential impacts of plastic-attached biofilms in various aquatic environments and the whole life cycle of plastics (i.e., from plastic fragments to microplastics) and also microbial flock characteristics using microbial plastics in the natural environment should also be addressed.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 179
Author(s):  
Said Munir ◽  
Martin Mayfield ◽  
Daniel Coca

Small-scale spatial variability in NO2 concentrations is analysed with the help of pollution maps. Maps of NO2 estimated by the Airviro dispersion model and land use regression (LUR) model are fused with measured NO2 concentrations from low-cost sensors (LCS), reference sensors and diffusion tubes. In this study, geostatistical universal kriging was employed for fusing (integrating) model estimations with measured NO2 concentrations. The results showed that the data fusion approach was capable of estimating realistic NO2 concentration maps that inherited spatial patterns of the pollutant from the model estimations and adjusted the modelled values using the measured concentrations. Maps produced by the fusion of NO2-LCS with NO2-LUR produced better results, with r-value 0.96 and RMSE 9.09. Data fusion adds value to both measured and estimated concentrations: the measured data are improved by predicting spatiotemporal gaps, whereas the modelled data are improved by constraining them with observed data. Hotspots of NO2 were shown in the city centre, eastern parts of the city towards the motorway (M1) and on some major roads. Air quality standards were exceeded at several locations in Sheffield, where annual mean NO2 levels were higher than 40 µg/m3. Road traffic was considered to be the dominant emission source of NO2 in Sheffield.


Author(s):  
Carmelo Gugliotta ◽  
Davide Gentili ◽  
Silvia Marras ◽  
Marco Dettori ◽  
Pietro Paolo Muglia ◽  
...  

The aim of the study is to evaluate the preparedness of retirement and nursing homes in the city of Sassari at the end of the first wave of the severe acute respiratory syndrome coronavirus 2 epidemic, first by investigating the risk perception of epidemic outbreaks by the facility managers and subsequently by carrying out a field assessment of these facilities. To perform the field assessment, a checklist developed by the CDC (Infection Prevention and Control Assessment Tool for Nursing Homes Preparing for COVID-19) and adapted to the Italian context was used. Fourteen facilities took part in the survey (87.5%). The application of good practices for each survey area was expressed as a percentage with the following median values: restriction policies (87.5%), staff training (53.8%), resident training (67.6%), availability of personal protective equipment (41.7%), infection control practices (73.5%) and communication (80%). Among the facilities, considerable variability was observed in these evaluation fields: only the restriction policies and communication activities were applied uniformly. A discrepancy was found between perceived risk and real danger in the facilities, requiring targeted communication actions. At present, it is necessary to promote a new approach based on the prediction of critical events, thereby providing the means to effectively address them.


2021 ◽  
Vol 9 (8) ◽  
pp. 788
Author(s):  
Qiuxuan Wang ◽  
Carlos Duarte ◽  
Li Song ◽  
George Christakos ◽  
Susana Agusti ◽  
...  

Spartina alterniflora has extensively invaded the coastline of China, including in Maoyan Island of Zhejiang Province. Ecological restoration has been conducted using non-native mangrove Kandelia obovata to replace S. alterniflora in an attempt to restore the impacted intertidal zones. To illustrate the ecological effectiveness of the restoration projects, macrobenthos communities were studied among different habitats within the restored areas, including one non-restored S. alterniflora marsh (SA) and three differently-aged restored K. obovata stands planted in 2003, 2009, and 2011 respectively (KF14, KF8, and KF6). Besides, one unvegetated mudflat (MF) adjacent to the non-restored S. alterniflora marsh and one K. obovata forest transplanted in 2006 (RKF) at a previously barren mudflat without invasion history of S. alterniflora were set as reference sites. A total of 69 species of macrobenthos were collected from Maoyan Island, and the species richness was dominated by gastropoda (23 species), polychaeta (18 species), and malacostraca (16 species). There was no significant difference between the six sites in terms of the abundance of macrobenthos, with the average values of abundance peaking in KF6 (734.7 ind m−2) and being lowest in RKF (341.3 ind m−2). The six sites had significant differences in terms of the biomass of macrobenthos. The KF8 site contained the highest average biomass (168.3 g m−2), whereas the MF site had the lowest (54.3 g m−2). The Shannon-Wiener diversity index and Pielou’s evenness index of the macrobenthos did not exhibit significant differences among the six sites. However, the results of permutational multivariate analysis of variance (PERMANOVA) revealed significant spatial differences in the macrobenthos community structure between the sites. Since KF14 shared a similar macrobenthos community structure with RKF, while representing a strikingly different structure from SA, we infer that ecological restoration using K. obovata can restore the macrobenthos community to resemble to a normally planted K. obovata forest about 15 years after restoration.


Sign in / Sign up

Export Citation Format

Share Document