Contrasting Responses of Morphologically Similar Wheat Cultivars to Temperatures Appropriate to Warm Temperature Climates With Hot Summers: a Study in Controlled Environment

1977 ◽  
Vol 4 (6) ◽  
pp. 877 ◽  
Author(s):  
AK Bagga ◽  
HM Rawson

This study attempted to determine if and why there are differences among three cultivars of wheat in their responses to temperature. The three semidwarf cultivars examined, Kalyansona, Condor and Janak, are currently used commercially. Temperature regimes chosen matched the range to which plants in warm temperate climates with hot summers would be exposed at different stages of development. Plants were grown in a phytotron in sunlit cabinets. Responses to temperature were different among the cultivars. Kalyansona was relatively un- responsive to temperatures during the floret phase, being little affected in the sizes of upper leaves, in floret production and grain set, in overall plant growth or in grain yield. The sole character to respond to temperature in this cultivar was kernel weight, which declined with increasing grain phase temperature. In contrast, Condor demonstrated marked plasticity during the floret phase in all plant characters measured. Its plasticity was such that, at the lower temperatures, it outyielded Kalyansona by a substantial margin while at the higher temperatures its yield was relatively poor. On a plant basis, Janak performed similarly to Condor. Rates of photosynthesis were relatively unaffected by temperature in any cultivar. This wide range of response among three superficially similar cultivars has promising implications for the tailoring of cultivars for different temperature zones. The importance of different plant characters to temperature stability is considered in the discussion.

1992 ◽  
Vol 32 (6) ◽  
pp. 717 ◽  
Author(s):  
NJ Kerr ◽  
KHM Siddique ◽  
RJ Delane

Eleven field trials were sown in the northeastern wheatbelt of Western Australia to test the hypothesis that if wheat cultivars with suitable maturity are sown earlier than current practice, then higher grain yields will be achieved. The experiments included time of sowing treatments that ranged from early May to late June in 1988, 1989 and 1990. Seven commercial cultivars with a wide range of developmental patterns and maturities were used. Sowing between mid May and early June produced the highest grain yields. For plantings after early June, yields declined by approximately 250 kg/ha (15%) per week. Delayed sowing caused a decrease in dry matter and kernel number (per m2). In general this reduction in kernel number was not compensated by an improvement in kernel weight. At early times of sowing, the medium-long season cultivars generally had higher yields than short season cultivars. The short season cultivars were the highest yielding cultivars at the late times of sowing. These results suggest that cultivars should be chosen to suit the seasonal break, which may vary from late April to mid June. As a consequence, farmers should be encouraged to retain a number of cultivars with differing maturities suited to a range of planting times.


1977 ◽  
Vol 28 (2) ◽  
pp. 165 ◽  
Author(s):  
RA Fischer ◽  
I Aguilar ◽  
DR Laing

Experiments to study the effect of grain number per sq metre on kernel weight and grain yield in a high-yielding dwarf spring wheat (Triticum aestivum cv. Yecora 70) were conducted in three seasons (1971–1973) under high-fertility irrigated conditions in north-western Mexico. Crop thinning, shading and carbon dioxide fertilization (reported elsewhere), and crowding treatments, all carried out at or before anthesis, led to a wide range in grain numbers (4000 to 34,000/m2). Results indicated the response of grain yield to changing sink size (grains per sq metre), with the post-anthesis environment identical for all crops each year, and with all but the thinner crops intercepting most of the post-anthesis solar radiation. Kernel weight fell linearly with increase in grain number over the whole range of grain numbers studied, but the rate of fall varied with the season. Grain yield, however, increased, reaching a maximum at grain numbers well above those of crops grown with optimal agronomic management but without manipulation. It was concluded that the grain yield in normal crops was limited by both sink and post-anthesis source. There was some doubt, however, as to the interpretation of results from crowded crops, because of likely artificial increases in crop respiration on the one hand, and on the other, in labile carbohydrate reserves in the crops at anthesis. Also deterioration in grain plumpness (hectolitre weight) complicates the simple inference that further gains in yield can come from increased grain numbers alone.


2021 ◽  
Author(s):  
Sabrina Ballauri ◽  
Enrico Sartoretti ◽  
Chiara Novara ◽  
Fabrizio Giorgis ◽  
Marco Piumetti ◽  
...  

2014 ◽  
Vol 40 (2) ◽  
pp. 178-181 ◽  
Author(s):  
Erlei Melo Reis ◽  
Tiago Zanatta ◽  
Anderson L. Danelli

Techniques that result in increased pathogen infection rates by employing reduced quantities of fungal spores with sparse sporulation have been developed. Experiments under controlled environment conditions were conducted to evaluate the effect of the density of Bipolaris sorokiniana conidia on the intensity of wheat helminthosporiosis. Using a selected inoculum density, the concentration of the tensoactive (Tween 20) that promoted maximum infection by the causal agent of the disease was determined. The density of lesions and the estimated severity of the disease were quantified. The selected inoculum density was 1.5 x 10(4) spores.mL-1 plus 480 µL tensoactive.L-1 water, resulting in a disease severity that allows selecting wheat cultivars resistant to B. sorokiniana.


2017 ◽  
Vol 1 (2) ◽  
pp. 188-191
Author(s):  
Alena Anatolievna Famina ◽  
Sergey Victorovich Malyshev ◽  
Oksana Yurievna Urbanovich

Abstract Grain yield is closely associated with kernel weight. Cell wall invertase (CWI) and sucrose synthase (SUS) are one of the most important enzymes for sink tissue development and carbon partition, and has a high association with kernel weight. Allellic composition of the TaCwi-A1 and TaSus2-2В loci was tested in 79 winter wheat cultivars using a co-dominant markers CWI21- CWI22, which amplified 404 or 402-bp and Sus2-185/589H2- Sus2-227/589L2, which amplified 423 or 381-bp fragments in different wheat accessions respectively. Some samples carried the mutation in the TaCwi-A1 locus that negatively affects thousand-kernel weight (TKW) were shown to have TKW higher than the cultivars and lines that do not have this mutation in their genomes and despite the significant differences in TKW (from 39,4 to 59,8 g), all investigated varieties possess Hap- L haplotype. It can be attributed to the fact that the TaCwi-A1 and TaSus2-2В are only two of the genes associated with kernel weight and its allelic composition analysis cannot explain all phenotypic variances.


1966 ◽  
Vol 46 (2) ◽  
pp. 195-203 ◽  
Author(s):  
B. Stanfield ◽  
D. P. Ormrod ◽  
H. F. Fletcher

Effects of day/night temperature regimes from 7/4 to 32/24 °C on growth and development of Pisum sativum L. var. Dark Skin Perfection were studied in controlled-environment cabinets. Light intensity was about 1500 foot-candles and the photoperiod was 16 hours. Rate of plant development, in terms of nodes produced per day, increased steadily as the average temperature increased. Rate of stem elongation, however, was most rapid at 21/13 °C; and plant height was greatest at 16/10 °C. On a dry matter accumulation rate basis, vine growth decreased above and below a temperature optimum which shifted from 21/16 to 16/10 °C in the course of plant development. The combination of high day and high night temperatures caused an increase in the number of nodes to the first flower. Tillering was most prolific at the lower temperatures and was absent at 32 °C day temperatures. Pea yield decreased as temperature increased above 16/10 °C, due mainly to a reduction in the number of pods per plant.


1987 ◽  
Vol 67 (1) ◽  
pp. 59-67 ◽  
Author(s):  
NASSER SIONIT ◽  
B. R. STRAIN ◽  
E. P. FLINT

Projected increases in atmospheric CO2 concentration will affect growth and productivity of many plant species under various environmental conditions. Since these increases in CO2 may also increase mean annual temperatures, it is important to determine how the soybean (Glycine max (L.) Merr.) will respond to changes in temperature regimes associated with atmospheric CO2 enrichment. Morphology and growth responses of the Ransom cultivar, which is adapted to a southern U.S.A. climate, to day/night temperature regimes of 18/12, 22/16, and 26/20 °C and atmospheric CO2 concentrations of 350, 675 and 1000 μL L−1 were studied in controlled environment chambers. Plant responses were determined at 20, 40, 67 and 115 (late senescence to maturity) days after planting. Plant height and number of branches increased slightly with CO2 enrichment and more significantly with increasing temperature. Root to shoot ratio remained unchanged at different CO2 concentrations but decreased as temperature increased. Leaf weight ratio and specific leaf weight decreased with increasing temperature. Low temperature reduced dry weight of all plant parts, but the reduction was ameliorated by increasing atmospheric CO2 concentration. The results show that increasing the atmospheric CO2 level causes soybean to grow more vigorously at low temperatures. Although controlled environment experiments have their drawbacks in regard to natural field conditions, the present data indicate that soybean will have enhanced growth even at moderately cool temperatures in the future global CO2 concentrations.Key words: Soybean growth, low temperature, CO2 × temperature interaction, environmental control


Author(s):  
F. Ladru ◽  
E. Lugscheider ◽  
H. Jungklaus ◽  
C. Herbst ◽  
I. Kvernes

Abstract For very large structures and parts in critical environments, a materials solution often cannot be found by using one material. The specific desired properties for those structures, like stiffness, ductility, high temperature stability, corrosion resistance, etc. are difficult to fulfill with only one material. In this case a solution may be found by using coatings and design their specific properties to replenish each other by their combination. The Thermal Spraying processes offer the necessary flexibility of producing thin to thick, ductile, soft to hard coatings while due to the wide range of process temperatures it is possible to process a wide range of materials, both as coating and structure. In this paper the some recent and important developments in Thermal Spraying to produce coatings for technical demanding structures will be described. These developments consist of High Power Plasma Spraying, powder- and process control development. To ensure process consistency during long spraying times and to apply reproducible coating quality a suitable process control is of great importance and the development of temperature control by Pyrometry and Thermography will be presented. The example will be drawn according to the application of a coating on a ball valve for off-shore and ship diesel engine parts (piston and valve).


2007 ◽  
Vol 4 (3) ◽  
pp. 105-111 ◽  
Author(s):  
S. Pillalamarri ◽  
R. Puligadda ◽  
C. Brubaker ◽  
M. Wimplinger ◽  
S. Pargfrieder

Wafer thinning has been effectively used to improve heat dissipation in power devices and to fabricate flexible substrates, small chip packages, and multiple chips in a package. Wafer handling has become an important issue due to the tendency of thinned wafers to warp and fold. Thinned wafers need to be supported during the backgrinding process, lithography, deposition, etc. Temporary wafer bonding using removable adhesives provides a feasible route to wafer thinning. Existing adhesives meet only a partial list of performance requirements. They do not meet the requirements of high-temperature stability combined with ease of removal. This paper reports on the development of a wide range of temporary adhesives to be used in wafer thinning applications that use both novel and conventional bonding and debonding methods. We have developed a series of novel removable high-temperature spin-on adhesives with excellent bonding properties and a wide range of operating temperatures for bonding and/or debonding to achieve a better processing window.


Sign in / Sign up

Export Citation Format

Share Document