Fruit Set in Lupinus angustifolius Cv. Unicrop. I. Phenology and Growth During Flowering and Early Fruiting

1981 ◽  
Vol 8 (3) ◽  
pp. 293 ◽  
Author(s):  
P Farrington ◽  
JS Pate

Interaction of vegetative and reproductive development was examined in Lupinus angustifolius L. cv. Unicrop, a grain legume in which only small proportions of flowers normally form fruit. Outgrowth of lateral shoots below an inflorescence coincided with shedding of flowers from upper positions on that inflorescence. Removal of laterals during early flowering of the inflorescence increased fruit number three- to fourfold, as did application to developing laterals of the growth retardants maleic hydrazide, AMO-1618, 'UNI-P-293', and 'Disugran'. Already-formed fruits appeared to restrict the number of fruit formed higher up an inflorescence, but their effect was small compared with that of lateral shoots. Shading of inflorescences due to overgrowth of surrounding laterals did not appear to affect fruit number of the inflorescence. Expanding laterals and secondary thickening of the main stem were major sinks for assimilates, while flowering inflorescences acquired only very small proportions (less than 3 %) of the shoot's current increment of dry matter. Studies of floral development showed that flower buds, open (white) flowers, and fruits were rarely shed, but that the 'corolla mauve' and 'corolla senescing' stages of late floral development were particularly vulnerable to abscission-promoting influences. This vulnerable period was marked by declining dry weight of the flower. It was not possible to determine whether the restrictive influence of lateral shoots on fruit number was of a hormonal character or due to the reduced supply of nutrients to developing flowers.

1976 ◽  
Vol 16 (80) ◽  
pp. 387 ◽  
Author(s):  
P Farrington

Reproductive development, and the distribution of dry matter and nitrogen were followed in field plantings of Lupinus angustifolius cv. Uniharvest and L. cosentinii selection CB12 from the start of flowering until maturity. L. cosentinii (CBI 2) commenced flowering one week earlier, but developed one less order of inflorescences and fewer flowers than L. angustfiolius (Uniharvest) ; yet it set more pods and produced more seed. In both species seeds did not commence to fill until the leaves began to fall shortly after flowering ended. Seeds in pods on all orders of inflorescence filled concurrently. The increase in seed weight coincided with a rapid fall in the nitrogen content of other fractions of the tops.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 456c-456
Author(s):  
Sanliang Gu ◽  
Leslie H. Fuchigami ◽  
Lailiang Cheng ◽  
Sung H. Guak ◽  
Charles C.H. Shin

Seedling plugs of `Early Girl' tomato plants (Lycopersicon esculentum Mill.) were potted in peatmoss and perlite (60:40% by volume) medium, fertilized with 8, 16, 24, or 32 g NutriCote Total controlled-release fertilizer (type 100, 13N–5.67P–10.79K plus micronutrients) per pot (2.81 L), and treated with 0%, 2.5%, 5%, or 7.5% antitranspirant GLK-8924 solution, at the four true-leaf stage. Plants were tipped at the second inflorescence and laterals were removed upon emergence. Flowering of both clusters were advanced by higher fertilization rates and depressed by GLK-8924. Increasing rates of fertilization increased flower and fruit number of the lower cluster and fruit set of upper cluster. GLK-8924 had no effect on flower number, fruit number, and fruit set. Fertilization increased the biomass production of all plant parts while GLK-8924 reduced the biomass production of leaves and fruit only. Root and stem biomass was not influenced by GLK-8924. The effect of GLK-8924 on fruit dry weight was dependent on the position of the cluster and GLK-8924 concentration. Fertilization did not interact with GLK-8924 to influence flowering, fruiting, and biomass production.


HortScience ◽  
2004 ◽  
Vol 39 (7) ◽  
pp. 1644-1646 ◽  
Author(s):  
L. Eric Hinesley ◽  
Scott A. Derby

Fraser fir [Abies fraseri (Pursh) Poir.] Christmas trees were sheared once annually over a 4-year period using fixed schedules ranging from July to March. Shearng in July reduced potential growth of the upper crown by 38%; when done in October or March, the reduction was about 50%. Length, dry weight, and one-sided area of individual needles were smallest on nonsheared trees, and increased to maximum values on trees sheared in March. In the upper crown (top three internodes), trees sheared in July were 16% to 33% heavier than those sheared in August or later. Dry matter in the upper crown was 30% foliage and 70% woody material. Sixty-one percent of the biomass in the upper crown was branches for trees sheared in July, compared to 55% for October. In the upper crown, foliage comprised about 50% of the branch dry weight (all treatments); in 3-year-old branches, it was 54% to 58%. Among treatments, shearing in July caused the smallest reduction of potential growth and yielded the largest and heaviest branches with significantly more foliage and lateral shoots, all of which would be expected to improve crown density and commercial value. October was the least favorable time to shear.


1990 ◽  
Vol 41 (2) ◽  
pp. 339 ◽  
Author(s):  
A Pigeaire ◽  
JS Pate ◽  
CA Atkins

Dry matter production and reproductive performance of sand-cultured, pot-grown plants of Lupinus angustifolius L. cv. Danja were markedly affected by varied aerial density (19, 23, 45 and 90 plants m-2) at constant high rooting volume (4.7 l plants-') or by varied rooting volume (1.1, 2.4 and 4.7 1 plant-1) at constant low aerial density (19 plants m-2). Dry weight of roots decreased markedly with reduced aerial spacing, but not with reduced rooting volume, whereas root:shoot dry weight ratio was affected (increased) only by decreased rooting volume. Above-ground competition reduced fruit and seed number to a relatively greater extent than dry matter production, leading to highest 'reproductive' indices and harvest indices at lowest aerial density and least rooting volume. Decreased rooting volume reduced reproductive yield primarily by decreasing the number of orders of branches, while not affecting numbers of pods and seeds on inflorescences. Increased aerial density specifically reduced fruit set and seed number on all inflorescences. Number of branches in each order of inflorescence was reduced, but not the number of orders of branches. Results are discussed in relation to observed effects of inter-plant competition under field conditions, and to nutritional and hormonal hypotheses concerning reproductive performance.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 508B-508
Author(s):  
Wayne F. Whitehead ◽  
Bharat P. Singh

This study was conducted over 3 years for the purpose of determining how tomato yield, fruit number, and vegetative dry matter are affected by winter cover crop and recommended fertilizer N rates. The following winter-spring fertility treatments were applied using randomized complete-block design with four replications: 1) 0 N winter–0 N spring, 2) 0 N winter–90 kg N/ha spring, 3) 0 N winter–180 kg N/ha spring, 4) 0 N winter+abruzi rye–0 N spring, 5) 0 N winter+hairy vetch–0 N spring, and 6) 0 N winter+crimson clover–0 N spring. In Spring of 1996, 1997, and 1999 `Mountain Pride' tomatoes were transplanted in all plots. Total yield was compiled over 6 weeks, while seasonal fruit number and plant dry matter were measured at final harvest. In 1999, highest plant dry matter (350.5 g/plant) was produced by vetch and highest fruit number (36/plant) by 180 kg N/ha. Total yield were highest (85.8 Mg/ha) at 90 kg N/ha in 1996 and lowest (35.3 Mg/ha) for control during 1997. Organic nitrogen from hairy vetch and crimson clover affected plant dry weight, tomato number and yield comparable to those receiving synthetic N. Results over three years for this study indicate that legume cover crops can be an effective N fertilizer in supporting plant dry matter, fruit number and fruit yield of tomato.


2020 ◽  
pp. 16-19
Author(s):  
Е.В. Янченко

Цель исследований – дать оценку сохраняемости и болезнеустойчивости современных сортов и гибридов моркови столовой и определить корреляционные зависимости влияния биохимических показателей качества на сохраняемость и степень поражения моркови столовой различными видами болезней в процессе хранения. Исследования проводились в 2011–2016 годах во ВНИИО – филиале ФГБНУ ФНЦО по общепринятым методикам. В биохимической лаборатории отдела земледелия и агрохимии содержание сухого вещества определяли высушиванием до абсолютно сухого веса, общего сахара – по Бертрану, аскорбиновой кислоты – по Мурри, нитраты – ионоселективным методом. При характеристике моркови столовой важнейший показатель, определяющий его качество – количество сухого вещества и сахаров. В процессе хранения были выявлены следующие болезни моркови: серая гниль (Botrytis cinerea Pers. ex Fr.), белая гниль (Sclerotinia sclerotiorum (Lib.)), белая парша (Rhizoctonia carotae Rad.), альтернариоз (Alternaria radicina M., Dr. et E.). В большей степени сортообразцы моркови столовой поражались серой гнилью. Лучшими по сохраняемости сортообразцами были Корсар (94,6%), F1Берлин (94,5%), Берликум Роял (94,1%) и F1 Звезда (94%). Сохраняемость у зарубежных сортов и гибридов моркови столовой была немного выше, чем у отечественных (на 0,4%) как за счет меньшей величины убыли массы (6,3% против 6,4%), так и потерь от болезней (1,6% против 1,9%). Сохраняемость корнеплодов моркови находится в прямой корреляционной зависимости от содержания сухого вещества (r=+0,41), каротиноидов (r=+0,39), моносахаров (r­=+0,30) и суммы сахаров (r=+0,27). Проявление серой гнили находится в обратной корреляционной связи с содержанием сухого вещества и каротиноидов (r=-0,37 и r=-0,35 соответственно), белой парши – в прямой корреляции с содержанием сухого вещества , моносахаров и дисахаров (r= +0,21; r= +0,39; r= -0,41 соответственно), белой гнили в обратной корреляционной связи с содержанием сухого вещества, моносахаров и дисахаров. The purpose of the research is to assess the persistence and disease resistance of modern varieties and hybrids of carrots and to determine the correlation between the influence of biochemical quality indicators on the persistence and degree of damage to carrots by various types of diseases during storage. The research was conducted in 2011–2016 at ARRIVG – branch of FSBSI FSVC, according to generally accepted methods. In the biochemical laboratory of the Department of Agriculture and Agrochemistry, the dry matter content was determined by drying to absolutely dry weight, total sugar – by Bertran, ascorbic acid – by Murri, nitrates – by the ion-selective method. When describing carrots, the most important indicator that determines its quality is the amount of dry matter and sugars. During storage, the following diseases of carrots were detected: gray rot (Botrytis cinerea Pers. ex Fr.), white rot (Sclerotinia sclerotiorum (Lib.), white scab (Rhizoctonia carotae Rad.), alternariasis (Alternaria radicina M., Dr. et E.). To a greater extent, varieties of table carrots were affected by gray rot. The best preserved varieties were Corsar (94.6%), F1 Berlin (94.5%), Berlicum Royal (94.1%) and F1 Zvezda (94%). The persistence of foreign varieties and hybrids of table carrots was slightly higher than that of domestic ones by 0.4%. both due to a smaller amount of weight loss (6.3% vs. 6.4%) and losses from diseases (1.6% vs. 1.9%). The persistence of carrot root crops is directly correlated with the content of dry matter (r=+0.41), carotenoids (r=+0.39), monosaccharides (r=+0.30) and the amount of sugars (r=+0.27). The manifestation of gray rot is in inverse correlation with the content of dry matter and carotenoids (r=-0.37 and r=-0.35, respectively), white scab is in direct correlation with the content of dry matter (r= +0.21; r= +0.39; r= –0.41, respectively), white rot is in inverse correlation with the content of dry matter, monosaccharides and disaccharides.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 481d-481
Author(s):  
Z. Wang ◽  
M.C. Acock ◽  
B. Acock

To develop models for estimating growth, flowering time and gum yield of opium poppy, we compared variability among five cultivars (T, L, B1, B2, B3) from different latitudes in three Southeast Asian countries. Variability in the relationships between gum yield, capsule volume, and dry weight was also examined. Plants were grown in six growth chambers at a 11-, 12-, 13-, 14-, 15-, or 16-h photoperiod (PP) with a 12-h 25/20 °C thermoperiod. The main capsule was lanced for opium gum at 10, 13, and 16 d after flowering (DAF). Plants were harvested at 21 DAF and separated into leaves, stems, and capsules. Flowering time for B2 was affected least by PP and B1 the most. Flowering times for B3, L, and T were similar across the range of PPs. All cultivars showed a significant increase in flowering time from 14 to 13 h PP. Cultivars that flowered late (such as B1) had greater biomass than those that flowered earlier. However, cultivars that flowered earlier (such as L) had more dry matter partitioned into capsule than late-flowering ones. B2, B3, and L had the highest gum yields while B1 had the lowest. Positive correlations were found between gum dry weight and capsule volume (or dry weight) for T and L, but no correlations were observed between these variables for B1, B2, and B3. Our results indicated that plant dry weight varied as much as 77% and flowering time varied up to 40% even though the critical photoperiod was the same for all cultivars. The ratio of gum yield to capsule dry weight were significantly different between B1 and T.


Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 815
Author(s):  
Sandra V. Rojas-Nossa ◽  
José María Sánchez ◽  
Luis Navarro

Floral development depends on multifactor processes related to genetic, physiological, and ecological pathways. Plants respond to herbivores by activating mechanisms aimed at tolerating, compensating, or avoiding loss of biomass and nutrients, and thereby survive in a complex landscape of interactions. Thus, plants need to overcome trade-offs between development, growth, and reproduction vs. the initiation of anti-herbivore defences. This study aims to assess the frequency of phloem-feeding herbivores in wild populations of the Etruscan honeysuckle (Lonicera etrusca Santi) and study their effects on floral development and reproduction. The incidence of herbivory by the honeysuckle aphid (Hyadaphis passerinii del Guercio) was assessed in three wild populations of the Iberian Peninsula. The effect of herbivory on floral morphology, micromorphology of stigmas and pollen, floral rewards, pollination, and fruit and seed set were studied. The herbivory by aphids reduces the size of flowers and pollen. Additionally, it stops nectar synthesis and causes malformation in pollen and microstructures of stigmas, affecting pollination. As a consequence, fruit set and seed weight are reduced. This work provides evidence of the changes induced by phloem-feeding herbivores in floral development and functioning that affect the ecological processes necessary to maintain the reproductive success of plants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingying Sun ◽  
Suiqi Zhang ◽  
Jiakun Yan

AbstractEight dryland winter wheat cultivars (Triticum aestivum L.), which were widely cultivated from the 1940s to the 2010s in Shaanxi Province, China, were selected and grown in plots, and two water treatments (irrigation and drought) were used to identify the contribution of ears, leaves and stems to grain weight and grain number associated with cultivar replacement. The plant height and stem dry weight of the dryland wheat decreased significantly during the cultivar replacement process, but there was a remarkable increase in the dry matter translocation of stems under irrigation. Shaded-ear and defoliation treatment could decrease the grain number and grain weight, and the grain weight was more influenced. Both the leaf and ear are important photosynthetic sources for dryland wheat, and the contribution of ear assimilates showed a significant increase over time; however, the contribution of leaf assimilates showed a negative correlation with cultivation over time. The accumulation of stem assimilates and ear photosynthesis both increased the grain weight potential. In the future breeding process, cultivars with more assimilates stored in the stem and greater assimilative capacity of ears, especially a greater contribution of ear assimilates, are expected to increase the grain yield.


Sign in / Sign up

Export Citation Format

Share Document