Growth, Opium Gum Yield, and Photoperiod Response in Five Opium Poppy (Papaver somniferum L.) Cultivars

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 481d-481
Author(s):  
Z. Wang ◽  
M.C. Acock ◽  
B. Acock

To develop models for estimating growth, flowering time and gum yield of opium poppy, we compared variability among five cultivars (T, L, B1, B2, B3) from different latitudes in three Southeast Asian countries. Variability in the relationships between gum yield, capsule volume, and dry weight was also examined. Plants were grown in six growth chambers at a 11-, 12-, 13-, 14-, 15-, or 16-h photoperiod (PP) with a 12-h 25/20 °C thermoperiod. The main capsule was lanced for opium gum at 10, 13, and 16 d after flowering (DAF). Plants were harvested at 21 DAF and separated into leaves, stems, and capsules. Flowering time for B2 was affected least by PP and B1 the most. Flowering times for B3, L, and T were similar across the range of PPs. All cultivars showed a significant increase in flowering time from 14 to 13 h PP. Cultivars that flowered late (such as B1) had greater biomass than those that flowered earlier. However, cultivars that flowered earlier (such as L) had more dry matter partitioned into capsule than late-flowering ones. B2, B3, and L had the highest gum yields while B1 had the lowest. Positive correlations were found between gum dry weight and capsule volume (or dry weight) for T and L, but no correlations were observed between these variables for B1, B2, and B3. Our results indicated that plant dry weight varied as much as 77% and flowering time varied up to 40% even though the critical photoperiod was the same for all cultivars. The ratio of gum yield to capsule dry weight were significantly different between B1 and T.

HortScience ◽  
1999 ◽  
Vol 34 (6) ◽  
pp. 1060-1063 ◽  
Author(s):  
Z. Wang ◽  
M.C. Acock ◽  
Q. Liu ◽  
B. Acock

Flowering time, growth, and opium gum yield from five seed sources (T, L, B1, B2, B3) of opium poppy (Papaver somniferum L.) collected from different latitudes in three Southeast Asian countries were determined. Plants were grown in six growth chambers at a 11-, 12-, 13-, 14-, 15-, or 16-hour photoperiod with a 12-hour, 25/20 °C thermoperiod. Flower initiation was observed under a dissecting microscope (40×) to determine if time to floral initiation was identical for all accessions across a wide range of photoperiods. The main capsule was lanced for opium gum at 10, 13, and 16 days after flowering (DAF). Plants were harvested at 21 DAF for plant height, leaf area, and organ dry-weight determinations. In a 16-hour photoperiod, flower initiation was observed 10 days after emergence (DAE) for B1 vs. 8 DAE for the other four accessions. Flowering time was affected most by photoperiod in B1 and least in B2. Flowering times for B3, L, and T were similar across the range of photoperiods. B2, B3, and L had the highest gum yields per capsule; even though B1 had the greatest total plant biomass, it produced the lowest gum yield. There was no difference among accessions in the average ratio of gum: individual capsule volume. For the ratio of gum: capsule dry weight, only the difference between T and B1 was significant. Capsule size did affect these ratios slightly. T had a larger gum: volume ratio for larger capsules, and B3 had a smaller gum: dry-weight ratio for heavier capsules. Flowering time varied up to 40%, capsule dry weight up to 41%, and opium gum yield up to 71% for the five accessions across all treatments. No relationship was found between flowering time and the latitude where the seed sources were collected. Time to flower initiation could not be used to predict time to anthesis because floral development rates varied significantly among accessions and photoperiods. Capsule volume and dry weight were useful in estimating gum yield.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 681d-681
Author(s):  
Z. Wang ◽  
M.C. Acock ◽  
B. Acock

Flower development in opium poppy (Papaver somniferum L. `album DC') is enhanced by long photoperiods (PP ≥ 16-hours). Predicting time to flower in field-grown opium poppy requires knowledge of which developmental stages are sensitive to PP and how the rate of flower development is changed by changes in PP. The objective of this work was to determine when poppy plants first demonstrated developmental changes in response to PP and how long PP continued to influence the time to first flower under consistent temperature conditions. Plants were grown in artificially lit growth chambers with either a 16- (inductive) or a 9-hour PP (noninductive). Plants were transferred at 1 to 3-day intervals from a 16- to a 9-hour PP and vice versa. All chambers were maintained at a 12-hour thermoperiod of 25/20°C. Poppy plants demonstrated developmental changes in response to PP four days after emergence and required a minimum of four inductive cycles before the plant flowered. Additional inductive cycles, up to of a maximum of nine, hastened flowering. After 13 inductive cycles, flowering time was no longer influenced by PP. These results indicate four phases between emergence and first flower: 1) a photoperiod-insensitive juvenile phase (JP); 2) a photoperiod-sensitive inductive phase (PSP); 3) a photoperiod-sensitive post-inductive phase (PSPP); and 4) a photoperiod-insensitive post-inductive phase (PIPP). The minimum durations (days) of these phases under the conditions of our experiment were JP = 4, PSP = 4, PSPP = 9, and PIPP = 14.


HortScience ◽  
1993 ◽  
Vol 28 (8) ◽  
pp. 826-827 ◽  
Author(s):  
W.J. McLaurin ◽  
S.J. Kays

Four high-yielding sweetpotato [Ipomoea batatas (L.) Lam.] cultivars displayed substantial leaf shedding, under typical field production conditions, that was not due to pathological or herbivory causes. Losses ranged from ≈ 45% to 60% of the total leaves formed by the normal harvest date during 2 years. There was a strong positive correlation between leaf shedding and the number of vines (r2 = 0.80) and nodes (r2 = 0.89) per plant. Likewise, positive correlations were found between leaf shedding and total dry weight (r2 = 0.67), root fresh weight (r2 = 0.65), root dry weight (r2 = 0.60), and vine dry weight (r2 = 0.68). Distinct differences were found among cultivars in dry-matter allocation within the plant. `Jewel' allocated a lower percentage of dry matter into vines and a higher percentage into storage roots. Estimated leaf dry matter losses due to leaf shedding ranged from 1.2 to 2.6 t·ha-1. High leaf losses appear to be closely related to vigorous vine growth and subsequent shading of older leaves but did not have a negative impact on storage root yield in the cultivars tested.


1992 ◽  
Vol 43 (3) ◽  
pp. 623
Author(s):  
N Thurling ◽  
R Kaveeta

Agronomic characteristics of two groups of early flowering Brassica napus lines and their respective parents were compared at East Beverley in the Western Australian wheatbelt. These lines had been derived through two generations of backcrossing and subsequent selfing from crosses of the B. napus cultivar Wesbrook (recurrent parent) with an early flowering B. napus line RU2 and an even earlier flowering B. campestris population Chinoli C42. Lines selected for this experiment had flowered earliest in a previous controlled environment experiment. Only RU2 and one WesbrookxRU2 line (IB72) had significantly higher yields than Wesbrook (149% and 166% respectively), and one Wesbrookxchinoli C42 line was the only line to have a significantly lower yield than Wesbrook. None of the lines had significantly higher yields than their respective non-recurrent parents. Although RU2 and IB72 flowered much earlier than Wesbrook, there was no significant relationship between flowering time and seed yield over all lines. Lines which were the earliest to commence stem elongation tended to have higher seed yields. However, of all the growth and development characters measured, the biological yield and the dry weight increment between commencement of flowering and maturity were most closely related to seed yield. RU2 and IB72 accumulated far more dry matter over the post-anthesis period than Wesbrook and all other lines except another WesbrookxRU2 line. The superior post-anthesis growth of RU2 and IB72 may simply be a manifestation of the longer period available for growth under more favourable environmental conditions or deeper roots extracting more water from a greater depth. However, since there was no relationship between flowering time and the post-anthesis dry matter increment, it seems more likely that IB72 has received genes for superior post-anthesis growth as well as those determining early flowering from RU2. Given the rapid decline in soil moisture availability during post-anthesis development in this environment, these genes may affect post-anthesis growth through determining a greater capacity for drought avoidance. The implications of these results are discussed with particular reference to the breeding of higher yielding B. napus cultivars for lower rainfall environments.


1984 ◽  
Vol 102 (2) ◽  
pp. 361-366 ◽  
Author(s):  
R. L. Yadav ◽  
R. Mohan ◽  
R. Singh ◽  
R. K. Verma

SummaryIn a 2-year field study conducted at Lucknow (26·5° N, 80·5° E and 120 m altitude), plant height, leaf area index, dry-matter accumulation and N uptake of opium poppy (Papaver somniferum L.) followed a sigmoid path. After attaining a peak of accumulation at 120 days, dry matter declined in plots given N fertilizer but remained static in the control. N application (50, 100, 150 and 200 kg/ha) increased the opium, seed and morphine yields compared with the control. Morphine concentration (%) in the opium, however, increased up to 100 kg N/ha and decreased when N doses exceeded that level. Divided application of N, i.e. half at sowing and remainder at the stem elongation stage, proved beneficial for opium, seed and morphine yields.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 999-1002 ◽  
Author(s):  
Zhongchun Wang ◽  
Mary C. Acock ◽  
Basil Acock

Four phases of development from emergence to anthesis of the opium poppy (Papaver somniferum L.) are recognized based on transfer studies using 9- and 16-hour photoperiods: a photoperiod-insensitive juvenile phase (JP), a photoperiod-sensitive inductive phase (PSP), a photoperiod-sensitive postinductive phase (PSPP), and a photoperiod-insensitive postinductive phase (PIPP). The objective of this experiment was to determine how the durations of the photoperiod-sensitive phases changed when the plants were exposed to different photoperiods. Plants were grown in lamplit growth chambers with a 12-hour thermoperiod of 25 °C day/20 °C night. They were transferred from a noninductive 9-h to an inductive 12-, 14-, or 16-hour photoperiod or vice versa at 1- to 4-day intervals to determine the durations of the four phases. The average number of days to flower by plants grown continuously in a 16-hour photoperiod was 32 days. Days to flower were delayed by 10 days in the 14-hour photoperiod and by 36 days in the 12-hour photoperiod. The durations of the four phases were not equally affected by photoperiod. The first three phases were photoperiod-dependent, the photoperiod effect being nonlinear. The durations of JP, PSP, and PSPP were 3, 5, and 17 days in the 16-hour; 4, 8, and 23 days in the 14-hour; and 7, 14, and 40 days in the 12-hour photoperiod, respectively. The final phase was not sensitive to photoperiod (i.e., PIPP lasted 7 days regardless of photoperiod). Based on these results, we conclude that the so-called juvenile phase cannot be regarded as photoperiod-insensitive. To model the development of opium poppy under field conditions, a knowledge of daylength as early as seedling emergence may be necessary. The number of inductive cycles needed for floral induction and the rate of floral development largely depend on the photoperiod experienced.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 887F-888
Author(s):  
Mary C. Acock ◽  
Zhongchun Wang ◽  
Basil Acock

Estimating yields of illicit narcotic crops requires knowledge of how climate, soil, and geography affect these crops. One method for estimating yields is to create databases from which to develop simulation models. This experiment is part of one of those databases, designed to determine if flowering time can be affected in young poppy seedlings by manipulating photoperiod (PP) and temperature. Plants were grown in chambers under a 12-, 13-, 14-, or 24-h PP and a 12-h thermoperiod of 25/20C. Plants at 10 or 20 days after emergence were transferred to separate chambers and treated for 48 h with either a) 10C and a 12-h PP or b) a 24-h PP and a 12-h thermoperiod of 25/20C. Days to flowering (DTF) decreased with increased PP, especially between 12 and 13 h. The 48-h PP interruption decreased DTF for PPs <24 h for both seedling ages, the effect being more pronounced for 10 d and for the 12-h PP. The 48-h 10C interruption had no effect on DTF. The poppy capsule, from which the gum is harvested, was a larger proportion of the shoot biomass under PPs >14 h, but capsule biomass was a positive linear function of DTF. DTF depends on PP and biomass at flowering depends on DTF.


HortScience ◽  
1993 ◽  
Vol 28 (4) ◽  
pp. 261C-261
Author(s):  
W.J. McLaurin ◽  
S.J. Kays

Under typical field production conditions, four high-yielding sweetpotato cultivars (Centennial, Jewel, Regal and Resisto) were found to lose substantial amounts of leaves due to natural senescense rather than pathological or herbivory causes. Leaf loss by the normal harvest date ranged from 46 to 63% of the total leaves formed in 1991 and 48 to 59% in 1992. There was a strong positive correlation between leaves lost and the number of vines (r2 = 0.80) and nodes (r2 = 0.89) per plant. Positive correlations were also found between leaf loss and total dry weight of the plant (r2 = 0.67). root fresh weight (r2 = 0.65). root dry weight (r2 = 0.60), and vine dry weight (r2 = 0.68). Distinct differences were found among cultivars in dry matter allocation within the plant. Of the cultivars tested, 'Jewel' allotted a lower percentage of dry matter into vines and a greater percentage into storage roots. Estimated leaf dry matter losses due to leaf shedding ranged from 1.2 to 2.6 MT·ha-1. Amount of leaf loss appeared to be closely related to vigorous vine growth and subsequent shading of older leaves, though leaf loss did not have a negative impact on storage root yield in the cultivars tested.


2015 ◽  
Vol 33 (2) ◽  
pp. 175-182 ◽  
Author(s):  
H.H. Ali ◽  
A. Tanveer ◽  
M. Naeem ◽  
M. Jamil ◽  
M. Iqbal ◽  
...  

Rhynchosia capitata is a newly emerging threatening weed of summer crops in many Asian countries. We conducted 2-yr experiments to evaluate R. capitata competition with mungbean under irrigated conditions. Rhynchosia capitata was allowed to compete with mungbean for 0, 3, 4, 5, 6, 7 weeks after planting and for full crop season. The competitive ability of R. capitata was assessed by measuring its dry weight, micro and macro nutrient contents and uptake; and its effects on mungbean growth and yield parameters. The results showed that full season weed competition produced highest dry weight of R. capitata and its macro and micronutrient contents and uptake. Yield and yield components of mungbean decreased in a linear fashion with increase in competition period of Rhynchosia capitata. Full season competition of R. capitata reduced the seed yield of mungbean by 49% and 46% during 2011 and 2012 respectively. In conclusion, damaging effect of R. capitata intrusion on mungbean yield is associated with duration of its presence in crop, accumulation of dry matter and the nutrient uptake by R. capitata, which otherwise should be available to crop.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 466F-466
Author(s):  
Z. Wang ◽  
M.C. Acock ◽  
B. Acock

Flower development in opium poppy (Papaver somniferum L.) has been divided into four phases from emergence to anthesis, which mark changes in its sensitivity to photoperiod: a photoperiod-insensitive juvenile phase (JP), a photoperiod-sensitive inductive phase (PSP), a photoperiod-sensitive post-inductive phase (PSPP), and a photoperiod-insensitive post-inductive phase (PIPP). To predict flowering time under field conditions, it is essential to know how these phases are affected by temperature. Plants were grown in artificially lit growth chambers and received three temperature treatments: 15/10, 20/15, and 25/20°C in a 12-hr thermoperiod. Plants were transferred within each temperature regime from a non-inductive 9-hr to an inductive 16-h photoperiod or vice versa at 1- to 4-day intervals to determine the durations of the four phases. Temperature did not affect the durations of the first two phases (i.e., JP lasted 3 to 4 days and PSP required 4 to 5 days). The most significant effect of temperature was on the duration of PSPP, which lasted 28, 20, and 17 days at 15/10, 20/15, and 25/20°C, respectively. The temperature effect on PIPP was small (maximum difference of 3 days for treatments) and the data too variable to indicate a significant trend. Our results indicate that PSPP is the only phase that clearly exhibits sensitivity to temperature.


Sign in / Sign up

Export Citation Format

Share Document