Responses to Brief Periods of Elevated Temperature in Ears and Grains of Wheat

1983 ◽  
Vol 10 (6) ◽  
pp. 549 ◽  
Author(s):  
SS Bhullar ◽  
CF Jenner

Brief warming of wheat ears reduced total grain weight, due mainly to a reduction in individual grain weight but also to a small reduction (2.6-12.8%) in grain number. Warming of ears reduced the water content of the grain, independently of humidity of the air with which the ears were warmed. Warming ears at high humidity accelerated the rate of dry matter accumulation as compared to warming at low humidity but both treatments resulted in a reduction of final weight per grain. The effect of temperature, and interaction with humidity, on grain dry matter accumulation are not due to changes in the water or osmotic potential of the grain. Warming the ears reduced temporarily the amount of sucrose and other soluble sugars in the grain, but not in the rachis or the floral organs. It seems unlikely that the supply of sugars available for distribution to the grain is depressed by elevated temperature, nor were reduced rates of grain- filling at elevated temperature simpiy related to apparent concentrations of sucrose within the grain: ripening and senescence of the pericarp were hastened by warming the ears, and these responses were not accompanied by reductions in the levels of sugars in the grain.

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Soyema Khatun ◽  
Jalal Uddin Ahmed ◽  
Tofazzal Hossain ◽  
M. Rafiqul Islam ◽  
Mohammed Mohi-Ud-Din

Three wheat cultivars, namely, BARI Gom 25, BARI Gom 26, and Pavon 76, were sown in experimental field of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, in Bangladesh, on 18 November, 2013. Two temperature regimes, namely, normal (23°C in open field) and elevated (6 ± 1°C higher compared to open field mean air temperature in polythene chamber) temperature, were created immediately after anthesis to investigate the response of wheat cultivars to heat stress. Elevated temperature cuts back the duration of grain filling by 5 days in BARI Gom 25 and BARI Gom 26 and 10 days in Pavon 76. Starch synthesis was also cut back by the same duration in respective cultivars under elevated temperature condition. Results indicate that failure of conversion of sugar to starch rather than limited supply of sugar under high temperature condition was responsible for shortening of grain filling duration in all wheat cultivars. However, the response of elevated temperature on grain starch and main stem grain dry matter was less profound in BARI Gom 25 and BARI Gom 26 compared to Pavon 76 indicating their better tolerance to elevated temperature.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kai Luo ◽  
Xiaoting Yuan ◽  
Chen Xie ◽  
Shanshan Liu ◽  
Ping Chen ◽  
...  

Insufficient and unbalanced biomass supply inhibited soybean [Glycine max (L.) Merr.] yield formation in the maize-soybean relay strip intercropping (IS) and monoculture soybean (SS). A field experiment was conducted to explore the soybean yield increase mechanism of DA-6 in IS and SS treatments. In this 2-year experiment, compact maize “Denghai 605” and shade-tolerant soybean “Nandou 25” were selected as cultivated materials. DA-6 with four concentrations, i.e., 0 mg/L (CK), 40 mg/L (D40), 60 mg/L (D60), and 80 mg/L (D80), were sprayed on soybean leaves at the beginning of flowering stage of soybean. Results showed that DA-6 treatments significantly (p < 0.05) increased soybean grain yield, and the yield increase ratio was higher in IS than SS. The leaf area index values and net photosynthesis rate of IS peaked at D60 and were increased by 32.2–49.3% and 24.1–27.2% compared with the corresponding CK. Similarly, DA-6 treatments increased the aboveground dry matter and the amount of soybean dry matter accumulation from the R1 stage to the R8 stage (VDMT) and highest at D60 both in IS and SS. D60 increased the VDMT by 29.0–47.1% in IS and 20.7–29.2% in SS. The TRG at D60 ranged 72.4–77.6% in IS and 61.4–62.5% in SS. The MDA content at D60 treatment was decreased by 38.3% in IS and 25.8% in SS. The active grain-filling day in IS was about 7 days longer than in SS. In D60 treatment, the Vmean and Vmax increased by 6.5% and 6.5% in IS and 5.7% and 4.3% in SS compared with the corresponding CK. Although the pod number and hundred-grain weight were significantly (p < 0.05) increased by DA-6 treatments, the grains per pod were maintained stable. The pod number and hundred-grain weight were increased by 30.1–36.8% and 4.5–6.7% in IS and 6.3–13% and 3.6–5.6% in SS. Thus, the grain yield at D60 was increased by 36.7–38.4% in IS and 21.7–26.6% in SS. DA-6 treatments significantly (p < 0.05) increased soybean grain yield and peaked D60 treatments both in IS and SS.


2018 ◽  
Vol 44 (3) ◽  
pp. 414 ◽  
Author(s):  
Tian-Jun XU ◽  
Tian-Fang LYU ◽  
Jiu-Ran ZHAO ◽  
Rong-Huan WANG ◽  
Chuan-Yong CHEN ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yingying Sun ◽  
Suiqi Zhang ◽  
Jiakun Yan

AbstractEight dryland winter wheat cultivars (Triticum aestivum L.), which were widely cultivated from the 1940s to the 2010s in Shaanxi Province, China, were selected and grown in plots, and two water treatments (irrigation and drought) were used to identify the contribution of ears, leaves and stems to grain weight and grain number associated with cultivar replacement. The plant height and stem dry weight of the dryland wheat decreased significantly during the cultivar replacement process, but there was a remarkable increase in the dry matter translocation of stems under irrigation. Shaded-ear and defoliation treatment could decrease the grain number and grain weight, and the grain weight was more influenced. Both the leaf and ear are important photosynthetic sources for dryland wheat, and the contribution of ear assimilates showed a significant increase over time; however, the contribution of leaf assimilates showed a negative correlation with cultivation over time. The accumulation of stem assimilates and ear photosynthesis both increased the grain weight potential. In the future breeding process, cultivars with more assimilates stored in the stem and greater assimilative capacity of ears, especially a greater contribution of ear assimilates, are expected to increase the grain yield.


2019 ◽  
Vol 46 (11) ◽  
pp. 1023 ◽  
Author(s):  
Gizaw M. Wolde ◽  
Thorsten Schnurbusch

Substantial genetic and physiological efforts were made to understand the causal factors of floral abortion and grain filling problem in wheat. However, the vascular architecture during wheat spikelet development is surprisingly under-researched. We used the branched headt near-isogenic lines, FL-bht-A1-NILs, to visualise the dynamics of spikelet fertility and dry matter accumulation in spikelets sharing the same rachis node (henceforth Primary Spikelet, PSt, and Secondary Spikelet, SSt). The experiment was conducted after grouping FL-bht-A1-NILs into two groups, where tillers were consistently removed from one group. Our results show differential spikelet fertility and dry matter accumulation between the PSt and SSt, but also showed a concomitant improvement after de-tillering. This suggests a tight regulation of assimilate supply and dry matter accumulation in wheat spikelets. Since PSt and SSt share the same rachis node, the main vascular bundle in the rachis/rachilla is expected to bifurcate to connect each spikelet/floret to the vascular system. We postulate that the vascular structure in the wheat spikelet might even follow Murray’s law, where the wide conduits assigned at the base of the spikelet feed the narrower conduits of the distal florets. We discuss our results based on the two modalities of the vascular network systems in plants.


HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2169-2177 ◽  
Author(s):  
Karen Mesa ◽  
Sara Serra ◽  
Andrea Masia ◽  
Federico Gagliardi ◽  
Daniele Bucci ◽  
...  

Annual accumulation of starch is affected by carbon reserves stored in the organs during the growing season and is controlled mainly by sink strength gradients within the tree. However, unfavorable environmental conditions (e.g., hail events) or application of management practices (e.g., defoliation to enhance overcolor in bicolor apple) could influence the allocation of storage carbohydrates. This preliminary research was conducted to determine the effects of early defoliation on the dry matter, starch, and soluble carbohydrate dynamics in woody organs, roots, and mixed buds classified by age and two levels of crop-load for one growing season in ‘Abbé Fétel’ pear trees (Oct. 2012 to mid-Jan. 2013 in the northern hemisphere). Regardless of the organs evaluated (woody organs, roots, and mixed buds), an increase of soluble carbohydrate concentration was observed in these organs in the period between after harvest (October) and January (dormancy period). Among all organs, woody short-old spurs showed the highest increase (+93.5%) in soluble sugars. With respect to starch, woody organs showed a clear trend of decreasing in concentration between October and January. In this case, short-old spurs showed the smallest decline in starch concentrations, only 6.5%, whereas in other tree organs starch decreased by 34.5%. After harvest (October), leaves showed substantially higher starch and soluble sugar concentrations in trees with lower crop-loads. These results confirm that in the period between October and January, dynamic interconversions between starch and soluble carbohydrates occur at varying magnitudes among organs in pear trees.


1994 ◽  
Vol 21 (6) ◽  
pp. 791 ◽  
Author(s):  
CF Jenner

As temperature rises above 18-22�C, the observed decrease in the duration of deposition of dry matter in the kernel is not accompanied by a compensating increase in the rate of grain filling with the result that grain weight (and yield) is diminished at high temperature. Reduced starch content accounts for most of the reduction in grain dry matter at high temperature. Responses to temperature in the low temperature range, 20-30�C (the LTR), could possibly be ascribed to the temperature response characteristics of the reaction catalysed by soluble starch synthase (SSS), the enzyme synthesising starch. However, the rate of cell enlargement and the rate of accumulation of nitrogen in the grain also do not increase much as temperature rises, so other explanations are conceivable for the temperature responses in the LTR. Variation amongst cultivars of wheat in tolerance of high temperature is evident in the LTR. At temperatures above 30�C (in the high temperature range (HTR) between 30 and 40�C), even for short periods, the rate of starch deposition is slower than that observed at lower temperatures, an effect which is carried over after transfer from high to lower temperatures. This response is attributable to a reduction in the activity, possibly due to thermal denaturation, of SSS. Several forms of SSS are found in cereal endosperm, and some forms may be more tolerant of high temperature than others. Loss of enzyme activity at high temperature is swift, but is partly restored some time after transfer from hot to cool conditions. There appear to be two distinct mechanisms of response to elevated temperature, both resulting in a reduced grain weight through reduced starch deposition, but one of them is important only in the range of temperature above 30�C.


1971 ◽  
Vol 77 (3) ◽  
pp. 445-452 ◽  
Author(s):  
R. W. Willey ◽  
R. Holliday

SUMMARYTwo barley experiments are described in which a range of plant populations were shaded during different periods of development. Shading during the ear development period caused considerable reductions in grain yield, largely by reducing the number of grains per ear. Shading during the grain-filling period caused no reduction in grain yield. It is suggested that under conditions of these experiments there was probably a potential surplus of carbohydrate available for grain filling and that grain yield was largely determined by the storage capacity of the ears. The importance of the number of grains per ear as an indicator of individual ear capacity is emphasized.The effects of plant population on grain yield and its components are also examined. It is concluded that the number of grains per ear is the component having greatest influence on the decrease in grain yield at above-optimum populations and attention is again drawn to the possible importance of ear capacity. It is argued that on an area basis the number of grains per unit area may give a good indication of ear capacity. Examination of this parameter shows a close relationship with grain yield per unit area for both the shading and population treatments. It is particularly evident that a decrease in grain yield at high populations was associated with a comparable decrease in the number of grains per unit area. It is suggested that this decrease in grain number may be due to a lower production of total dry matter during ear development rather than an unfavourable partitioning of this dry matter between the ear and the rest of the plant. This lower production of total dry matter is attributed to the crop growth rates of the higher populations having reached their peak and then having declined before the end of the ear development period. This crop growth rate pattern, through its effect on grain number per unit area, is put forward as the basic reason why, in the final crop, grain yield per unit area decreases at above-optimum populations.


1986 ◽  
Vol 13 (5) ◽  
pp. 617 ◽  
Author(s):  
SS Bhullar ◽  
CF Jenner

The hypothesis that reduced grain weight resulting from elevated temperature is the result of a reduction in the supply of assimilates to the grain or lessened availability of sucrose within the endosperm for grain filling has been investigated. Detached ears of wheat were cultured on solutions of sucrose varying in concentration from a level which supports normal rates of grain filling to one above and one below that level. Contrary to expectation, at the low concentration of sucrose the rate of grain filling in detached ears increased more at elevated temperature than it did in ears supplied with higher concentrations of sucrose, or compared with ears developing on intact plants. In other experiments ears were detached and, after a brief exposure to elevated temperature, were cultured on solutions of sucrose. The residual effects of warming, expressed as slower grain filling and lower mature grain weight, were less pronounced at low than at higher concentrations of sucrose. This result also is not in accordance with the hypothesis.


1995 ◽  
Vol 35 (4) ◽  
pp. 495 ◽  
Author(s):  
RG Flood ◽  
PJ Martin ◽  
WK Gardner

Total crop dry matter (DM) production and its components, remobilisation of stem reserves, and the relation of these to grain yield were studied in 10 wheat cultivars sown at Walpeup, Boort, and Horsham in the north-western Victorian wheatbelt. Between sites, all DM components decreased in the order Horsham > Boort > Walpeup. Differences between Boort and Walpeup were not always significant. Total DM at anthesis for Walpeu,p and Boort was in a similar range, and less than that for Horsham. Yields increased in the order Walpeup < Boort < Horsham. When data from the 3 sites were combined, leaf, stem (excluding cv. Argentine IX), and total DM were related to grain yield. Within sites, ear DM at anthesis was related to grain yield. Grain yield for all cultivars at Horsham and Walpeup and 5 cultivars at Boort was greater than the increases in crop DM from anthesis to maturity, indicating that pre-anthesis stored assimilates (stem reserves) were used for grain filling. Post-anthesis decrease in stem weight was inversely related to grain yield only at Horsham, which supports the view of utilisation of stem reserves for grain filling at this site. At Boort and Walpeup there was a similar negative trend, but values for 2 cultivars at each site were outliers, which weakened the trend. The wide adaptability of the Australian cultivars used in this study may be related to the differential remobilisation of stem reserves at each site. A measure of yield stability, however, was not related to stem weight loss during the grain-filling period.


Sign in / Sign up

Export Citation Format

Share Document