scholarly journals Preliminary Study on Effect of Early Defoliation on Dry Matter Accumulation and Storage of Reserves on ‘Abbé Fétel’ Pear Trees

HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2169-2177 ◽  
Author(s):  
Karen Mesa ◽  
Sara Serra ◽  
Andrea Masia ◽  
Federico Gagliardi ◽  
Daniele Bucci ◽  
...  

Annual accumulation of starch is affected by carbon reserves stored in the organs during the growing season and is controlled mainly by sink strength gradients within the tree. However, unfavorable environmental conditions (e.g., hail events) or application of management practices (e.g., defoliation to enhance overcolor in bicolor apple) could influence the allocation of storage carbohydrates. This preliminary research was conducted to determine the effects of early defoliation on the dry matter, starch, and soluble carbohydrate dynamics in woody organs, roots, and mixed buds classified by age and two levels of crop-load for one growing season in ‘Abbé Fétel’ pear trees (Oct. 2012 to mid-Jan. 2013 in the northern hemisphere). Regardless of the organs evaluated (woody organs, roots, and mixed buds), an increase of soluble carbohydrate concentration was observed in these organs in the period between after harvest (October) and January (dormancy period). Among all organs, woody short-old spurs showed the highest increase (+93.5%) in soluble sugars. With respect to starch, woody organs showed a clear trend of decreasing in concentration between October and January. In this case, short-old spurs showed the smallest decline in starch concentrations, only 6.5%, whereas in other tree organs starch decreased by 34.5%. After harvest (October), leaves showed substantially higher starch and soluble sugar concentrations in trees with lower crop-loads. These results confirm that in the period between October and January, dynamic interconversions between starch and soluble carbohydrates occur at varying magnitudes among organs in pear trees.

2014 ◽  
Vol 26 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Izabela Zawiska ◽  
Piotr Siwek

ABSTRACT The results of two years (2010-2011) of field studies using two types of nonwoven mulches (one biodegradable, polylactic acid PLA 54 g m-2, and traditional polypropylene PP 50 g m-2) on the yield and quality of tomato are presented. Seeds of tomato (‘Mundi’ F1) were sown in a greenhouse, in containers filled with perlite and sand, and then the plants at the cotyledon stage were replanted in multipot trays filled with substrate for vegetable plants. In the last week of May, seedlings were planted on mulches in the field at a spacing of 50 × 100 cm. The mulch was maintained throughout the growing season. A plot that remained unmulched served as the control. Tomatoes were harvested once a week. The fruits were evaluated for L-ascorbic acid, dry matter, soluble sugars and nitrate content. In 2011, the analysis of the plant material showed that the concentration of L-ascorbic acid was about 23% higher in the tomato fruits harvested from plants grown on biodegradable PLA 61 g m-2 mulch in comparison to the control. A similar effect was demonstrated for the soluble sugar concentration in 2011 for both types of nonwovens.


2013 ◽  
Vol 12 (2) ◽  
pp. 236-247 ◽  
Author(s):  
Sarah McGrath ◽  
Trevor R. Hodkinson ◽  
Andreas Frohlich ◽  
Jim Grant ◽  
Susanne Barth

Phenotyping of genetic resources remains the bottleneck in the characterization of genetic resources, since the advent of modern next-generation sequencing technologies has made genotyping much more cost- and time-effective. This article reports on the phenotyping of agriculturally important traits in perennial ryegrass (Lolium perenne). In the present study, water-soluble carbohydrate (WSC), crude protein and dry matter contents were recorded for 1320 individuals, pooled into 132 samples from 33 perennial ryegrass ecotypes and cultivars at five different harvest time points across the 2004 growing season. While, in general, the cultivars had higher WSC contents than the ecotypes, individual ecotypes did show potential to be used in breeding programmes, as they had higher values than all other accessions at particular cutting time points. In correlation analyses, positive relationships were observed between dry matter and glucose contents both early and late in the growing season. Principal components analysis allowed the split either between cultivars and ecotypes or between tetraploid cultivars and the rest of the accessions at four of the five cutting time points. In the analysis of variance, cutting time was the most significant factor influencing the variation in traits.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
SAMBORLANG K. WANNIANG ◽  
A. K. SINGH

A field experiment was conducted during kharif 2011 on experimental farm of the College of Post Graduate Studies (CAU–Imphal), Umiam (Meghalaya) to evaluate the effect of integration of green manuring, FYM and fertilizers as integrated nutrient management (INM) practices on growth and developmental behaviour of quality protein maize cultivar QPM 1. The data revealed that comparatively higher amount of primary nutrients were added in green manured maize plots in comparison to non green manured treatments. Green manuring also left a positive response on plant height, CGR, RGR leaf area, and dry matter accumulation in plants though the difference between green manured and non-green manured treatments was at par. Treatments 75 % RDF + 5 t FYM ha-1, 50 % RDF + 7.5 t FYM ha-1, 100 % RDF ha-1 and 75 % RDF + 2.5 t FYM ha-1 recorded significantly higher values of all the above said growth parameters over 50 % RDF + 5 t FYM ha-1 and control treatments. At all stages of observations, the maximum dry matter was associated with RDF (recommended doses of fertilizers) which was at par with 75 % RDF + 5 t FYM ha-1, but significantly higher over the plant dry weight recorded from all remaining treatments. A Significant difference in CGR at 30 – 60 and 60 – 90 DAS stage and in RGR at 90 DAS - harvest stage was observed due to various combinations of recommended dose of fertilizer with different doses of FYM. Number of days taken to attain the stages of 50% tasselling, silking and maturity did not differ significantly due to green manuring. However, treatment 75 % RDF + 5 t FYM ha-1 took significantly lesser number of days for these stages than other treatment combinations. The superiority of the treatment 75 % RDF + 5 t FYM ha-1 indicated a possibility of substituting 25% of RDF with 5 t FYM ha-1 without any loss in dry matter accumulation in plants of the quality protein hybrid maize in mid-hill ecosystems of Meghalaya.


2020 ◽  
Author(s):  
Xue Wang ◽  
Fei-Hai Yu ◽  
Yong Jiang ◽  
Mai-He Li

Abstract Aims Carbon and nutrient physiology of trees at their upper limits have been extensively studied, but those of shrubs at their upper limits have received much less attention. The aim of this study is to examine the general patterns of non-structural carbohydrates (NSCs), nitrogen (N) and phosphorous (P) in shrubs at the upper limits, and to assess whether such patterns are similar to those in trees at the upper limits. Methods Across Eurasia, we measured the concentrations of soluble sugars, starch, total NSCs, N and P in leaves, branches and fine roots (< 0.5 cm in diameter) of five shrub species growing at both the upper limits and lower elevations in both summer (peak growing season) and winter (dormancy season). Important Findings Neither elevation nor season had significant effects on tissue N and P concentrations, except for lower P concentrations in fine roots in winter than in summer. Total NSCs and soluble sugars in branches were significantly higher in winter than in summer. There were significant interactive effects between elevation and season for total NSCs, starch, soluble sugars and the ratio of soluble sugar to starch in fine roots, showing lower soluble sugars and starch in fine roots at the upper limits than at the lower elevations in winter but not in summer. These results suggest that the carbon physiology of roots in winter may play an important role in determining the upward distribution of shrubs, like that in the alpine tree-line trees.


1966 ◽  
Vol 66 (3) ◽  
pp. 351-357 ◽  
Author(s):  
W. Ellis Davies ◽  
G. ap Griffith ◽  
A. Ellington

The primary growth of eight varieties of three species–white clover (3), red clover (4) and lucerne (1)–was sampled at fortnightly intervals and the percentage dry matter, in vitro digestibility, crude protein, water soluble carbohydrates, P, Ca, K, Na and Mg were determined.Differences between species were nearly always significant and the general order of merit was white clover, red clover and lucerne. The exceptions were for dry-matter percentage where this order was reversed, and red clover had the lowest Na and highest Mg content.


2007 ◽  
Vol 58 (1) ◽  
pp. 21 ◽  
Author(s):  
Heping Zhang ◽  
Neil C. Turner ◽  
Michael L. Poole ◽  
Senthold Asseng

The growth and yield of spring wheat (Triticum aestivum L.) were examined to determine the actual and potential yields of wheat at a site in the high rainfall zone (HRZ) of south-western Australia. Spring wheat achieved yields of 5.5−5.9 t/ha in 2001 and 2003 when subsurface waterlogging was absent or minimal. These yields were close to the estimated potential, indicating that a high yield potential is achievable. In 2002 when subsurface waterlogging occurred early in the growing season, the yield of spring wheat was 40% lower than the estimated potential. The yield of wheat was significantly correlated with the number of ears per m2 (r2 = 0.81) and dry matter at anthesis (r2 = 0.73). To achieve 5–6 t/ha of yield of wheat in the HRZ, 450–550 ears per m2 and 10–11 t/ha dry matter at anthesis should be targetted. Attaining such a level of dry matter at anthesis did not have a negative effect on dry-matter accumulation during the post-anthesis period. The harvest index (0.36−0.38) of spring wheat was comparable with that in drier parts of south-western Australia, but relatively low given the high rainfall and the long growing season. This relatively low harvest index indicates that the selected cultivar bred for the low- and medium-rainfall zone in this study, when grown in the HRZ, may have genetic limitations in sink capacity arising from the low grain number per ear. We suggest that the yield of wheat in the HRZ may be increased further by increasing the sink capacity by increasing the number of grains per ear.


Author(s):  
A. Godlewska ◽  
G. A. Ciepiela

The present work is an attempt to assess the effect of biostimulants of various origins and nitrogen regime on yield performance, chlorophyll content, protein content and soluble carbohydrate in red clover. A field experiment was arranged as a randomized subblock design (split-plot) in Poland in August 2013. The following factors were examined: type of biostimulant; nitrogen application rate: 0 (control) and 30 kg. ha-1. Biostimulants significantly increased red clover biomass yields. All the examined biostimulants contributed to an increase in the amount of organic components in red clover dry matter. Nitrogen applied at the rate of 30 kg. ha-1 significantly increased red clover yield, chlorophyll content in red clover leaves and protein compounds but it also significantly reduced soluble carbohydrates in the dry matter of test plants.


1995 ◽  
Vol 46 (1) ◽  
pp. 99 ◽  
Author(s):  
F Giunta ◽  
R Motzo ◽  
M Deidda

A field experiment was carried out in Sardinia (Italy) on durum wheat to analyse the effects of different moisture treatments, irrigated (I), rainfed (R) and stressed (S), on leaf area index (LAI), radiation intercepted (Q) and water use (WU), efficiency of conversion of radiation and water into dry matter (RUE and WUE), nitrogen uptake and carbon and nitrogen partitioning in the above-ground part of the plant. In the period between beginning of stem elongation and heading, drought affected the maximum LA1 in the most stressed treatment (4.7 in S v. about 6.9 in R and I), but not Q and WU. RUE was also lowered by drought in this period (0.68 in S v. about 0.95 g MJ-1 in R and I) as a reduced biomass was recorded in S at heading (528gm-2 in S v. 777 g m-2 on average in R and I). In contrast with the previous period, the reduction in LA1 between heading and maximum ear weight (MEW) determined a significant reduction in Q and WU, WUE and RUE, resulting, ultimately, in notable differences in the total biomass produced until MEW (1203, 930 and 546 gm-2 in I, R and S respectively). The amount of stem reserves relocated to the grain decreased as the level of stress increased, going from 223gm-2 in I to 9gm-2 in S and was accumulated almost entirely (from 76% of the total in I to 100% in S), in the post-heading period. Nitrogen percentage was not affected by the treatments applied apart from the higher values in stem and flag leaf in S later in the growing season due to an inhibition of nitrogen translocation in S. The total nitrogen uptake was lower in S (12.3gm-2) than in I (16.6gm-2) only as a consequence of the different dry matter accumulation patterns. The importance of WUE in this type of Mediterranean environment is discussed, with particular concern to the key role of modulation of leaf area development through the growing season.


1972 ◽  
Vol 27 (2) ◽  
pp. 285-298 ◽  
Author(s):  
Robert Moss ◽  
J. A. Parkinson

1. In the wild, red grouse live largely on heather, a high-fibre (25%), low-protein (7%) food. Digestibility trials were carried out under semi-natural conditions, with magnesium as a digestibility marker. Two trials were done, one in autumn and one in spring.2. Digestibility of the dry matter varied from 21 to 30% and metabolizable energy from 1.1 to 1.6 kcal/g. These variations were inversely related to intake and could partly be accounted for by facultative variations in holocellulose and lignin digestion.3. Digestion of soluble carbohydrates, protein (measured as α-amino-nitrogen) and holocellulose varied between trials according to the initial concentration in the food. The digestibility of soluble carbohydrate was high (78–83%) in autumn (16% in food) and low (61–66%) in spring (11% in food) and that of protein was relatively low (24–31%) in autumn (6% in food) and high (42–48%) in spring (7% in food). Digestibility of crude fat was 30–33% for four birds and 20% for one bird.4. By comparison with poultry, voluntary intake of dry matter was very high relative to body-weight and intake of energy appeared to be adequate. None the less, all birds lost weight during the trials, presumably for reasons other than energy shortage.5. Urate excretion increased in parallel with body-weight losses, but formed only 2% of the total N output at low weight losses, in which event the main nitrogenous compounds in the droppings were α-amino N (presumably largely from undigested protein), ammonium salts and ornithuric acid.6. The ornithuric acid was presumably a detoxication product of prolignins and possibly tannins and other polyphenols. Its excretion by grouse corresponds to the excretion of hippuric acid by ruminants.


1978 ◽  
Vol 58 (1) ◽  
pp. 199-206 ◽  
Author(s):  
M. TOLLENAAR ◽  
T. B. DAYNARD

Kernel development was studied in the maize (Zea mays L.) hybrids United-H106 and Funk’s G-4444, grown in a controlled-environment growth room. A method was employed in which husks were excised, and kernels were removed from the same set of ears at several subsequent sampling dates. This method did not affect the dry matter accumulation of the remaining kernels. Basal kernels (kernel numbers 6–15 in the row) and tip kernels (kernel numbers 31–40) were removed at 2-day intervals during the period from 10 to 20 days postsilking. Dry weight, ethanol-soluble sugar content, and starch content were determined for each sample. Accumulation of dry matter in the tip kernels ceased in a fraction of the United-H106 ears at the onset of the period of linear tip-kernel dry matter accumulation. Only small differences were observed in sugar content between growing and non-growing tip kernels of ears of United-H106. Starch appeared to continue to accumulate in kernels in which dry matter had ceased to accumulate. Except for a delay of approximately 2 days, the pattern of development of tip kernels in Funk’s G-4444 was similar to that of kernels at the base.


Sign in / Sign up

Export Citation Format

Share Document