Quantitative Mapping of Leaf Photosynthesis Using Chlorophyll Fluorescence Imaging

1995 ◽  
Vol 22 (2) ◽  
pp. 277 ◽  
Author(s):  
B Genty ◽  
S Meyer

A method has been developed for routine, non-invasive monitoring of the topography of leaf photochemistry. The method uses video images of leaf chlorophyll fluorescence, taken during steady-state photosynthesis and during a transitory saturation of photochemistry, to construct, pixel by pixel, an image of the photochemical yield of photosystem II (PSII). The photochemical yield of PSII was estimated according to Genty et al. (1989) (Biochimica et Biophysica Acta 990, 87-92). The effectiveness of the method was shown by mapping the heterogeneous distribution of photosynthetic activity after treatment with either a herbicide (DCMU), abscisic acid, or during the course of the induction of photosynthesis. Leaf CO2 assimilation was simultaneously monitored under non- photorespiratory conditions to estimate the average quantum yield of linear electron transport. A unique proportional relationship was found between the mean photochemical yield of PSII calculated from images of the photochemical yield of PSII, and the average quantum yield of linear electron transport in three plant species exposed to a wide range of treatments or conditions. This new ability to quantitatively visualise leaf photochemistry provides a powerful tool to probe the spatial distribution of leaf photosynthesis. Possible errors in estimating the photochemical yield of PSII from mean fluorescence measurements are discussed.

Weed Science ◽  
1999 ◽  
Vol 47 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Jason K. Norsworthy ◽  
Ronald E. Talbert ◽  
Robert E. Hoagland

Resistance to propanil by a barnyardgrass (BYG) biotype has been reported, and its occurrence is becoming widespread in U.S. rice-producing regions. Interactions between propanil and the herbicides anilofos, molinate, pendimethalin, piperophos, quinclorac, and thiobencarb and the insecticide carbaryl were evaluated in laboratory studies for improved control of propanil-resistant barnyardgrass (R-BYG). Chlorophyll fluorescence measurements of BYG leaf segments were used to ascertain electron transport inhibition and to assess the synergy/antagonism of propanil (100 μM) with the various additives (50 μM). Synergistic effects on photosynthetic inhibition were found with anilofos, carbaryl, pendimethalin, and piperophos in combination with propanil. Such synergistic actions of chemicals with propanil may lead to chemical combinations useful for R-BYG control.


Author(s):  
Hamid Mohammadi ◽  
Mohsen Janmohammadi ◽  
Naser Sabaghnia

<p>Drought stress negatively affects plant photosynthesis and disturbs the electron transport activity. Evaluation of the chlorophyll fluorescence parameters might reflect influence of the environmental stress on plants and can be applied as an indicator of the primary photochemistry of photosynthesis. In current study the effect of foliar application of benzylaminopurine (BAP, a synthetic cytokinin) and abscisic acid (ABA) on chlorophyll fluorescence parameters of relatively drought tolerant (Pishtaz) and susceptible (Karaj3) bread wheat genotypes under well watered and terminal water deficit condition have been evaluated. Terminal drought was induced by withholding water at anthesis stage (Zadoks scale 65). Results showed that coefficient of non-photochemical quenching of variable fluorescence (qN), quantum yield of PS II photochemistry (ΦPSII) and photochemical quenching (qP) were affected by hormone spray treatments. So that evaluation of parameters at 7 day after foliar treatments revealed that ABA significantly increased electron transport rate (ETR) and qN while considerably decreased ΦPSII, gs and maximum quantum yield of photosystem II (Fv/Fm). However exogenous application of cytokinin could increase gs, Fv/Fm and ΦPSII and the highest value of these parameters was recorded in <em>cytokinin </em>treated plants of Pishtaze cv. under well watered condition. Nevertheless, evaluation of the parameters in different periods after spraying showed that with approaching the maturity stage some traits like as gs, Fv/Fm and ETR significantly decreased in both genotypes. Evaluation of gs and Chlorophyll fluorescence parameters of genotypes between different irrigation levels showed that although cv. Pishtaz showed higher performance of PSII under well watered condition, it failed to maintain its superiority under stress condition. This finding suggests that some more responsive parameter like gs, Fv/Fm and ΦPSII can be considered as reliable indicator for understanding the biochemical and physiological effects of exogenous application of phytohormones under terminal drought stress.</p>


2014 ◽  
Vol 11 (20) ◽  
pp. 5657-5674 ◽  
Author(s):  
D. Sperlich ◽  
C. T. Chang ◽  
J. Peñuelas ◽  
C. Gracia ◽  
S. Sabaté

Abstract. Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 °C) or freezing temperatures (< 0 °C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc, max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc, max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibition-avoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.


2016 ◽  
Vol 141 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Marc W. van Iersel ◽  
Geoffrey Weaver ◽  
Michael T. Martin ◽  
Rhuanito S. Ferrarezi ◽  
Erico Mattos ◽  
...  

Photosynthetic lighting is one of the main costs of running controlled environment agriculture facilities. To optimize photosynthetic lighting, it is important to understand how plants use the provided light. When photosynthetic pigments absorb photons, the energy from those photons is used to drive the light reactions of photosynthesis, thermally dissipated, or re-emitted by chlorophyll as fluorescence. Chlorophyll fluorescence measurements can be used to determine the quantum yield of photosystem II (ΦPSII) and nonphotochemical quenching (NPQ), which is indicative of the amount of absorbed light energy that is dissipated as heat. Our objective was to develop and test a biofeedback system that allows for the control of photosynthetic photon flux density (PPFD) based on the physiological performance of the plants. To do so, we used a chlorophyll fluorometer to measure ΦPSII, and used these data and PPFD to calculate the electron transport rate (ETR) through PSII. A datalogger then adjusted the duty cycle of the light-emitting diodes (LEDs) based on the ratio of the measured ETR to a predefined target ETR (ETRT). The biofeedback system was able to maintain ETRs of 70 or 100 µmol·m−2·s−1 over 16-hour periods in experiments conducted with lettuce (Lactuca sativa). With an ETRT of 70 µmol·m−2·s−1, ΦPSII was stable throughout the 16 hour and no appreciable changes in PPFD were needed. At an ETRT of 100 µmol·m−2·s−1, ΦPSII gradually decreased from 0.612 to 0.582. To maintain ETR at 100 µmol·m−2·s−1, PPFD had to be increased from 389 to 409 µmol·m−2·s−1, resulting in a gradual decrease of ΦPSII and an increase in NPQ. The ability of the biofeedback system to achieve a range of different ETRs within a single day was tested using lettuce, sweetpotato (Ipomoea batatas), and pothos (Epipremnum aureum). As the ETRT was gradually increased, the PPFD required to achieve that ETR also increased, whereas ΦPSII decreased. Surprisingly, a subsequent decrease in ETRT, and in the PPFD required to achieve that ETR, resulted in only a small increase in ΦPSII. This indicates that ΦPSII was reduced because of photoinhibition. Our results show that the biofeedback system is able to maintain a wide range of ETRs, while it also is capable of distinguishing between NPQ and photoinhibition as causes for decreases in ΦPSII.


2021 ◽  
Author(s):  
Ginga Shimakawa ◽  
Chikahiro Miyake

Abstract Photosynthetic organisms commonly develop the strategy to keep the reaction centre chlorophyll of photosystem I, P700, oxidised for preventing the generation of reactive oxygen species in excess light conditions. In photosynthesis of C4 plants, CO2 concentration is kept at higher levels around ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) by the cooperation of the mesophyll and bundle sheath cells, which enables them to assimilate CO2 at higher rates and to survive under drought stress. However, the regulatory mechanism of photosynthetic electron transport for P700 oxidation is still poorly understood in C4 plants. Here we assessed gas exchange, chlorophyll fluorescence, electrochromic shift, and near infrared absorbance in the intact leaves of NADP-malic enzyme subtype of C4 plants maize in a comparison with the C3 plant field mustard. Instead of the alternative electron sink due to photorespiration, photosynthetic linear electron flow was strongly limited between photosystems I and II dependent on the proton gradient across the thylakoid membrane (ΔpH) in response to the suppression of CO2 assimilation in maize. The increase of ΔpH for P700 oxidation was caused by the regulation of proton conductance of chloroplast ATP synthase but not by promoting cyclic electron flow, which was supported by linear relationships among CO2 assimilation rate, linear electron flow, P700 oxidation, ΔpH, and the oxidation rate of ferredoxin. At the scale of intact leaves, the ratio of PSI to PSII was estimated almost 1:1 in both C3 and C4 plants. Overall, the photosynthetic electron transport was regulated for P700 oxidation in maize through the same strategies as in C3 plants only except for the capacity of photorespiration despite the structural and metabolic differences in photosynthesis between C3 and C4 plants.


2022 ◽  
Vol 2 (3) ◽  
pp. 196-206
Author(s):  
W M U D Wijethunga ◽  
L S H Jayasooriya ◽  
S M J C Subasinghe ◽  
H M P C Kumarihami ◽  
C K Beneragama

Chlorophyll fluorescence (ChlF) is a non-invasive technique that can be potentially used in postharvest research to gain useful information on early responses to postharvest stresses. This study was conducted to validate the application of ChlF transient analysis in determining the postharvest changes in photosynthetic apparatus in three ornamental foliage species, i.e., Cordyline fruticosa ‘Willy’s Gold’ and ‘Rubra’, Dracaena sanderiana ‘White’, and Nephrolepis exaltata. Salicylic acid (100 and 300 mg·L−1), glucose (10 g·L−1), and their combinations were used as holding solutions with control treatment (distilled water) at room temperature (25±2°C). Vase life was evaluated using OJIP analysis. OJIP parameters, i.e., specific energy fluxes per reaction center (ABS/RC, TR/RC, ET/RC, and DI/RC), flux ratios (maximum quantum yield of primary photochemistry-φPo), electron transport efficiency (ψo), and quantum yield of electron transport (φEo), and performance index (PI) were recorded every other day, using a fluorometer (FluorPen 100). Leaf chlorophyll contents of all species and anthocyanin contents of two cordyline cultivars were determined. Data were subjected to ANOVA in a completely randomized design. Mean separation was done by DMRT (p ≤ 0.05). Clear variations in ChlF were observed in every foliage species with the time. OJIP analysis showed species-depended variations. The higher ABS/RC and DI/RC were recorded for D. sanderiana and N. exaltata compared to the PI of those species. At the end of the experiment, the chlorophyll contents were decreased, while anthocyanin contents were increased. Consequently, chlorophyll fluorescence changes in photosynthetic apparatus can be used for the prediction of the postharvest stresses and longevity of cut foliage.


1991 ◽  
Vol 18 (3) ◽  
pp. 267 ◽  
Author(s):  
JP Krall ◽  
GE Edwards

The partitioning of light energy absorbed by photosystem (PS) II in the C4 species maize was investigated under various photosynthetic photon flux densities (PPFD), temperatures, and intercellular CO2 concentrations. The relationship between the quantum yield of PSII electron transport (�e) and the quantum yield of CO2 assimilation (ΦCO2) was generally found to be linear, with similar slopes. This indicates that PSII electron transport is tightly coupled to CO2 assimilation such that measurements of �e may be used to estimate photosynthetic rates in maize. Coefficients of quenching of PSII chlorophyll fluorescence indicated that, under excessive PPFD or when CO2 assimilation was decreased due to suboptimal or supraoptimal temperature or low Ci, the energy in excess of that needed to drive the reduced rate of PSII electron transport was dissipated via a mechanism known to be correlated to the trans-thylakoid proton gradient (high energy quenching, qE) and a mechanism believed to arise in the PSII antenna chlorophyll (qN(slow)). At suboptimal temperature the energy dissipation was principally at the antenna level and qE was low, while at supraoptimal temperature the reverse was true. The results are discussed relative to coupling of PSII activity to CO2 fixation and mechanisms of energy dissipation in this C4 species.


Sign in / Sign up

Export Citation Format

Share Document