scholarly journals Foliar photochemical processes and carbon metabolism under favourable and adverse winter conditions in a Mediterranean mixed forest, Catalonia (Spain)

2014 ◽  
Vol 11 (20) ◽  
pp. 5657-5674 ◽  
Author(s):  
D. Sperlich ◽  
C. T. Chang ◽  
J. Peñuelas ◽  
C. Gracia ◽  
S. Sabaté

Abstract. Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 °C) or freezing temperatures (< 0 °C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc, max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc, max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibition-avoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.

2014 ◽  
Vol 11 (6) ◽  
pp. 9697-9759 ◽  
Author(s):  
D. Sperlich ◽  
C. T. Chang ◽  
J. Peñuelas ◽  
C. Gracia ◽  
S. Sabaté

Abstract. Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 °C) or freezing temperatures (< 0 °C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.) during a period of mild winter conditions and their responses to a sudden cold period. The state of the photosynthetic machinery in both periods was thus tested by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials similar to those under spring conditions. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc, max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). This change persisted for several weeks after the cold period despite the recovery of the temperature to the conditions previous to the frost event. The responses of Vc, max and Jmax were highly species-specific, where Q. ilex exhibited the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a comparatively stronger winter effect on sunlit leaves. Our results generally agreed with the previous classifications of photoinhibition-avoiding (P. halepensis) and photoinhibition-tolerant (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies which are, however, equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo in our study site. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.


1995 ◽  
Vol 22 (2) ◽  
pp. 277 ◽  
Author(s):  
B Genty ◽  
S Meyer

A method has been developed for routine, non-invasive monitoring of the topography of leaf photochemistry. The method uses video images of leaf chlorophyll fluorescence, taken during steady-state photosynthesis and during a transitory saturation of photochemistry, to construct, pixel by pixel, an image of the photochemical yield of photosystem II (PSII). The photochemical yield of PSII was estimated according to Genty et al. (1989) (Biochimica et Biophysica Acta 990, 87-92). The effectiveness of the method was shown by mapping the heterogeneous distribution of photosynthetic activity after treatment with either a herbicide (DCMU), abscisic acid, or during the course of the induction of photosynthesis. Leaf CO2 assimilation was simultaneously monitored under non- photorespiratory conditions to estimate the average quantum yield of linear electron transport. A unique proportional relationship was found between the mean photochemical yield of PSII calculated from images of the photochemical yield of PSII, and the average quantum yield of linear electron transport in three plant species exposed to a wide range of treatments or conditions. This new ability to quantitatively visualise leaf photochemistry provides a powerful tool to probe the spatial distribution of leaf photosynthesis. Possible errors in estimating the photochemical yield of PSII from mean fluorescence measurements are discussed.


1995 ◽  
Vol 22 (2) ◽  
pp. 209 ◽  
Author(s):  
U Schreiber ◽  
H Hormann ◽  
C Neubauer ◽  
C Klughammer

The general principles involved in chlorophyll fluorescence quenching analysis by the saturation pulse method are presented, outlining the rationale for using the empirical fluorescence parameters Fv/Fm and Fv/Fm' as indices for the photosystem II (PSII) photochemical quantum yield, ΦII, in the dark-adapted or illuminated states, respectively. The relationship between ΦII and the quantum yield of photosynthetic electron transport is linear over a wide range of quantum flux densities. However, there is a fraction of PSII contributing approximately 30% to maximal quantum yield, which is closed at rather low quantum flux densities, while at the same time there is only a small drop in ΔF/Fm'. The details of Fm and Fm' determination by application of saturating light are critically examined, with emphasis on the situation in algae where the fluorescence rise to the peak leLel is followed by a rapid decline. For this purpose, the rapid induction kinetics upon onset of strong continuous illumination are investigated. Dark-adapted samples show two distinct intermediate fluorescence levels, I1 and I2, in the polyphasic rise from the O to the P level. The I1 level separates a biphasic 'photochemical' rise, which also can be induced by a saturating single turnover flash, from several 'thermal' phases, induction of which requires multiple turnovers at PSII. Arguments are put forward favouring the I2 level for assessment of Fm or Fm', on which calculation of Fv/Fm or ΔF/Fm' is based. It is shown that although an assessment based on the I1 level, as practised by the so-called pump- and-probe method, does lead to a consistent underestimation of ΔF/Fm, in many cases similar information as with I2 determination is obtained.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
Claudia Paez ◽  
Jason A. Smith

Biscogniauxia canker or dieback (formerly called Hypoxylon canker or dieback) is a common contributor to poor health and decay in a wide range of tree species (Balbalian & Henn 2014). This disease is caused by several species of fungi in the genus Biscogniauxia (formerly Hypoxylon). B. atropunctata or B. mediterranea are usually the species found on Quercus spp. and other hosts in Florida, affecting trees growing in many different habitats, such as forests, parks, green spaces and urban areas (McBride & Appel, 2009).  Typically, species of Biscogniauxia are opportunistic pathogens that do not affect healthy and vigorous trees; some species are more virulent than others. However, once they infect trees under stress (water stress, root disease, soil compaction, construction damage etc.) they can quickly colonize the host. Once a tree is infected and fruiting structures of the fungus are evident, the tree is not likely to survive especially if the infection is in the tree's trunk (Anderson et al., 1995).


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 483
Author(s):  
Esmaeil Zangani ◽  
Kamran Afsahi ◽  
Farid Shekari ◽  
Eileen Mac Sweeney ◽  
Andrea Mastinu

The effects of nitrogen and phosphorus levels on the physiological traits, yield, and seed yield of rapeseed (Brassica napus L.), were studied in a farm research project of Zanjan University. Three levels of nitrogen (0, 100, and 200 kg/ha) and three levels of phosphorus (0, 75, and 150 kg/ha) were considered. The results showed that an increase in nitrogen level caused an increase in the leaf chlorophyll content so that the application of 200 kg/ha of nitrogen increased the chlorophyll content of the leaves until the mid-grain filling stage. Nitrogen application lowered leaf stomatal conductance in the early flowering stage whereas the stomatal conductance was increased during the late flowering stage. Nitrogen application (100 and 200 kg/ha) also increased the quantum yield of photosystem II. On the other hand, with the application of 150 kg/ha and 75 kg/ha of phosphorus, the leaf stomatal conductance and the quantum yield of photosystem II in the early flowering stage increased respectively. The results showed that the application of 200 kg/ha of nitrogen and 75 kg/ha of phosphorus significantly increased seed and oil yield compared to the control. In addition, the number of siliques per plant and the weight of 1000 seeds showed an increasing trend that was affected by nitrogen and phosphorus levels. This study demonstrated that nitrogen enhanced the chlorophyll content, leaf area, and consequently, the quantum yield of photosystem II. Nitrogen also augmented the seed filling duration, seed yield, and oil yield by increasing gas exchange. As a result, the application of 100 kg/ha of nitrogen together with 75 kg/ha phosphorus showed the greatest effect on the qualitative and quantitative yield of rapeseed. However, the application of 200 kg/ha of nitrogen alone or in combination with different levels of phosphorus did not significantly increase many of the studied traits.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 432 ◽  
Author(s):  
Melody A. Keena ◽  
Paul M. Moore ◽  
Gregg Bradford

Anoplophora chinensis (Forster) is an invasive species that can damage many tree species in orchard, urban, and forested habitats. Adult survival, reproduction, and egg hatch of A. chinensis from Italy and China are evaluated at eight constant temperatures (5, 10, 15, 20, 25, 30, 35, and 40 °C) under laboratory conditions. The estimated Tmax for longevity was 42 and 33 °C for females and 42 and 39 °C for males from China and Italy, respectively. The estimated Tmax, Tmin, and optimum temperature for fecundity were 35, 9, and 29 °C, respectively. Females laid eggs at 15–30 °C and eggs hatched at 15–35 °C. Days to first oviposition increased exponentially from 13 days at 30 °C to >300 days near 10 °C. The estimated Tmin for egg hatch was 13 °C, the Tmax at 38 °C, and the optimum 29 °C. Percentage hatch was estimated to be highest at 26 °C and have a Tmax of 31 °C and Tmin of 10 °C. These results indicate that summer temperatures over a wide range of latitudes should support beetle survival and reproduction, but at temperatures ≥35 °C, oviposition ceases, and adult survivorship declines. In addition, females may survive into the fall, but lay fewer eggs that may not hatch. These responses of A. chinensis to temperature can be used for developing phenological models to predict the timing of stages for management or eradication efforts.


Sign in / Sign up

Export Citation Format

Share Document