The Influence of Recovery Temperature on the Effects of a Brief Heat Shock on Wheat. I. Grain Growth

1995 ◽  
Vol 22 (6) ◽  
pp. 945 ◽  
Author(s):  
PJ Stone ◽  
R Savin ◽  
IF Wardlaw ◽  
ME Nicolas

The responses of wheat yield to moderately high (20-32�C) and very high temperatures (> 32�C) have been studied separately in the literature, but not in combination, despite the fact that this is usually how elevated temperatures occur in the field. In this study, controlled environment conditions were used in order to examine the interaction of moderately high and very high temperatures during grain filling and their effect on wheat yield. Specifically, we wished to test the hypothesis that cooler conditions would facilitate greater recovery of grain growth following a brief exposure to very high temperature. To this end, wheat was exposed to either 21/16 or 40/16�C (day/night) from 15-19 days after anthesis and subsequently grown under one of three moderately high temperature regimes until maturity: 21/16, 27/22 or 30/25�C. For all moderately high temperature treatments, a brief 'heat shock' significantly reduced mature individual kernel mass by 17%, on average. In the absence of 'heat shock', increasing moderately high temperature progressively reduced mature individual kernel mass by ca 2.5% for each 1�C increase in average daily temperature. After a 'heat shock' event, however, there was not a progressive decline in mature individual kernel mass with increasing moderately high temperature. A short period of very high temperature applied early in grain filling therefore reduced the response of wheat to subsequent moderately high temperatures. We conclude that the reduction in yield caused by 'heat shock' is not alleviated by cool post-shock conditions.

1997 ◽  
Vol 48 (5) ◽  
pp. 615 ◽  
Author(s):  
Roxana Savin ◽  
Peter J. Stone ◽  
Marc E. Nicolas ◽  
Ian F. Wardlaw

In this study, controlled-environment conditions were used to compare the effects of moderately high and very high temperatures during grain filling on grain growth and malting quality of barley. Heat stress applied from 15 to 20 days after anthesis (DAA) reduced grain weight by about 35%, whereas longer periods (15–20 days) of moderately high temperature applied from 20 DAA to maturity reduced grain weight by about 6%. Both heat stress and moderately high temperature resulted in reduced grain weight through a reduction in the duration of grain filling. Grain composition was altered by both moderately high and very high temperatures, although the changes were larger under very high temperatures. In general, there was a decrease in starch content, resulting from the reduction in both volume and number of A- and B-type starch granules. Nitrogen concentration was significantly increased only in the 30/25°C treatments, and changes in diastatic power were only minor. There was a reduction in β-glucan content, together with an increase in β-glucan degradation. However, malt extract was not significantly affected by these stresses.


1996 ◽  
Vol 23 (6) ◽  
pp. 739 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas

Short periods of very high temperature (> 35�C) are common during the grain filling period of wheat, and can significantly alter mature protein composition and consequently grain quality. This study was designed to determine the stage of grain growth at which fractional protein accumulation is most sensitive to a short heat stress, and to examine whether varietal differences in heat tolerance are expressed consistently throughout the grain filling period. Two varieties of wheat differing in heat tolerance (cvv. Egret and Oxley, tolerant and sensitive, respectively) were exposed to a short (5 day) period of very high temperature (40�C max, for 6 h each day) at 5-day intervals throughout grain filling, from 15 to 50 days after anthesis. Grain samples were taken throughout grain growth and analysed for protein content and composition (albumin/globulin, monomer, SDS-soluble polymer and SDS-insoluble polymer) using size-exclusion high-performance liquid chromatography. The timing of heat stress exerted a significant influence on the accumulation of total wheat protein and its fractions, and protein fractions differed in their responses to the timing of heat stress. Furthermore, wheat genotype influenced both the sensitivity of fractional protein accumulation to heat stress and the stage during grain filling at which maximum sensitivity to heat stress occurred.


1995 ◽  
Vol 22 (6) ◽  
pp. 927 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas

Short periods of very high temperature (> 35�C) are common in many of the world's wheat growing areas and can be a significant factor in reducing yield and quality of wheat. This study was designed to determine the stage at which grain growth is most sensitive to a short period of high temperature and to examine whether varietal differences in heat tolerance are expressed throughout the whole grain-filling period. Two varieties of wheat differing in heat tolerance (cvv. Egret and Oxley) were exposed to a short (5 days) period of very high temperature (40�C max. for 6 h each day) at 5-day intervals throughout grain filling, starting from 15 days after anthesis (DAA) and concluding at 50 DAA. Responses of grain dry matter accumulation and water content to high temperature were monitored throughout grain filling, and the results compared with controls maintained at 21/16�C day/night. Varietal differences in heat tolerance were expressed throughout the grain-filling period. Mature individual kernel mass was most sensitive to heat stress applied early in grain filling and became progressively less sensitive throughout grain filling, for both varieties. Reductions in mature kernel mass resulted primarily from reductions in duration rather than rate of grain filling.


1998 ◽  
Vol 25 (1) ◽  
pp. 13 ◽  
Author(s):  
P.J. Stone ◽  
M.E. Nicolas

Two varieties of wheat differing in heat tolerance were exposed to very high temperature (40/19°C day/night) for periods of 1–10 days duration. Responses of grain dry matter, water and fractional protein accumulation to high temperature were monitored throughout grain filling in the heat- sensitive variety, and at maturity only in the heat-tolerant variety. Results are compared with controls maintained at 21/16°C day/night. As little as 1 day of heat treatment reduced kernel mass by 14% in the heat-sensitive variety (Oxley), but by only 5% in the heat-tolerant variety (Egret). In both varieties, the reduction of individual kernel mass due to high temperature increased linearly with increased duration of heat treatment, such that after the first day of heat stress, each additional day of treatment reduced mature individual kernel mass by a further 1.6%. For a given duration of heat treatment, the difference in response of the two varieties was constant (9%), indicating that the varietal difference in heat tolerance was maintained for both brief and extended periods of very high temperature. Responses of grain water content and fractional protein accumulation to duration of heat stress are discussed.


1996 ◽  
Vol 23 (5) ◽  
pp. 605 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas ◽  
IF Wardlaw

In this study, we have sought to identify the nature of the response to both moderately high (25-32�C) and very high (>32�C) temperatures by examining their interactive effects on the accumulation of functionally important proteins during grain-filling. In particular, we wished to determine if the deleterious effects of very high temperature could be alleviated by subsequently cool conditions. To this end, wheat cv. Oxley was exposed to either 21/16 or 40/16�C (day/night) from 15 to 19 days after anthesis and subsequently grown under one of three temperature regimes until maturity: 21/16 (control), 27/22 or 30/25�C. Grain samples were taken throughout grain growth and analysed for protein content and composition. Wheat proteins were separated and quantified as albumin,globulin, monomer, SDS-soluble polymer and SDS-insoluble polymer using size-exclusion high-performance liquid chromatography. The various protein fractions responded differentially and usually additively to moderately high and very high temperatures during grain-filling. Cool post-shock conditions did not alleviate the effects of very high temperature on grain protein composition. Heat treatments reduced polymer:monomer ratio because the accumulation of monomer was reduced less than that of polymer.


1995 ◽  
Vol 46 (3) ◽  
pp. 475 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas

The responses of 75 cultivars of wheat to a short (3 day) period of very high temperature (40�C max.) applied at either 10 or 30 days after anthesis were examined under controlled conditions. The effect of high temperature on a number of yield (grain number, individual kernel mass and N per kernel) and quality components (protein composition, apparent amylose content and noodle swelling power) is described for the sample population and for a number of varieties which were either particularly heat tolerant or sensitive. Genotypic variation of response to high temperature of the order of 20% was recorded for the majority of yield and quality components. The fact that responses of this magnitude were caused by exposure to high temperatures lasting only 5 to 6% of the grain filling period demonstrates the extent to which short periods of very high temperature may affect wheat yield and quality.


1995 ◽  
Vol 22 (6) ◽  
pp. 935 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas

Two wheat varieties differing in heat tolerance were exposed to four heat treatments in order to determine if a sudden rise from ca 20-40�C caused a greater reduction of individual kernel mass than a gradual (6�C h-1) rise over the same temperature range. For the heat sensitive variety (Oxley), the reduction of individual kernel mass following sudden heat stress (26%) was greater than that resulting from a gradual heat stress of equivalent thermal time (13%) or equal days of treatment (18%). By contrast, for the heat tolerant variety (Egret), the reduction of individual kernel mass following rapid exposure to heat stress (12%) was not significantly greater than that caused by a gradual treatment of equal days duration (10%). Nevertheless, for Egret, sudden heat stress significantly reduced mature kernel mass compared with high temperature treatment of equivalent thermal time (6%). We conclude that heat acclimation may help to mitigate wheat yield losses due to high temperature and that the ability to acclimate to high temperature varies between wheat genotypes. Comparison of wheat varieties for yield tolerance to high temperature should therefore occur under conditions that allow gradual acclimation to elevated temperature.


1997 ◽  
Vol 24 (2) ◽  
pp. 245 ◽  
Author(s):  
M. Corbellini ◽  
M.G. Canevar ◽  
L. Mazza ◽  
M. Ciaffi ◽  
D. Lafiandra ◽  
...  

High temperatures occurring during grain filling are known to affect wheat grain yield and quality considerably. In this paper we report the results of experiments carried out with two cultivars of bread wheat (Triticum aestivum L.) and two cultivars of durum wheat (Triticum durum Desf.). The plants, cultivated in pots, were subjected to 13 heat treatments (temperature up to 40°C) differing in duration and timing and starting 7 days after anthesis. Heat treatments were applied by temporary transfer of the pots to a glasshouse where the temperature rose to 40°C as a consequence of solar radiation for periods ranging from 5 to 30 days. The applied heat shocks substantially affected dry matter and protein accumulation in the different parts of the plant. Early heat shock (5 days with a total of 18 h of temperature in the range 35–40°C) caused a small reduction of kernel mass and no effect on protein per kernel; the damage was greater in the central and in the final stage of grain filling. Plants subjected to a progressive increase of temperature, or to an early heat shock, acquired thermotolerance to further heat shocks. Continuous exposure to very high temperatures from 27 days after pollination to maturity did not negatively affect grain yield and it facilitated the remobilisation of nitrogen from vegetative to reproductive organs. Rheological properties were severely affected by heat shocks at all stages of grain filling: 5 days of heat shock were sufficient to reduce mixing tolerance by 40–60%. These variations in rheological properties were accompanied by modification of the level of protein aggregation: soluble polymeric proteins and low molecular weight gliadins progressively increased according to the intensity of the stress, while insoluble polymeric proteins decreased. Our experiments, carried out in conditions close to the Mediterranean climate, indicate that the occurrence of very high temperature in the range 35–40°C during grain filling substantially affects dry matter and protein accumulation in the different parts of the plant. The formation of the complex protein aggregates responsible for positive dough mixing properties is significantly reduced by very high temperature. When heat shock came late in grain filling, grain yield and protein concentration were not negatively affected but a ‘dough weakening’ effect, which may reduce the commercial value of the production, is to be expected.


2014 ◽  
Vol 1693 ◽  
Author(s):  
Dean P. Hamilton ◽  
Michael R. Jennings ◽  
Craig A. Fisher ◽  
Yogesh K. Sharma ◽  
Stephen J. York ◽  
...  

ABSTRACTSilicon carbide power devices are purported to be capable of operating at very high temperatures. Current commercially available SiC MOSFETs from a number of manufacturers have been evaluated to understand and quantify the aging processes and temperature dependencies that occur when operated up to 350°C. High temperature constant positive bias stress tests demonstrated a two times increase in threshold voltage from the original value for some device types, which was maintained indefinitely but could be corrected with a long negative gate bias. The threshold voltages were found to decrease close to zero and the on-state resistances increased quite linearly to approximately five or six times their room temperature values. Long term thermal aging of the dies appears to demonstrate possible degradation of the ohmic contacts. This appears as a rectifying response in the I-V curves at low drain-source bias. The high temperature capability of the latest generations of these devices has been proven independently; provided that threshold voltage management is implemented, the devices are capable of being operated and are free from the effects of thermal aging for at least 70 hours cumulative at 300°C.


1999 ◽  
Vol 14 (3) ◽  
pp. 715-728 ◽  
Author(s):  
P. Zhao ◽  
D. G. Morris ◽  
M. A. Morris Munoz

High-temperature forging experiments have been carried out by axial compression testing on a Fe–41Al–2Cr alloy in order to determine the deformation systems operating under such high-speed, high-temperature conditions, and to examine the textures produced by such deformation and during subsequent annealing to recrystallize. Deformation is deduced to take place by the operation of 〈111〉 {110} and 〈111〉{112} slip systems at low temperatures and by 〈100〉{001} and 〈100〉{011} slip systems at high temperatures, with the formation of the expected strong 〈111〉 textures. The examination of the weak 〈100〉 texture component is critical to distinguishing the operating slip system. Both texture and dislocation analyses are consistent with the operation of these deformation systems. Recrystallization takes place extremely quickly at high temperatures (above 800 °C), that is within seconds after deformation and also dynamically during deformation itself. Recrystallization changes the texture such that 〈100〉 textures superimpose on the deformation texture. The flow stress peak observed during forging is found at a very high temperature. Possible origins of the peak are examined in terms of the operating slip systems.


Sign in / Sign up

Export Citation Format

Share Document