Effect of the Duration and Intensity of Heat Shock During Grain Filling on Dry Matter and Protein Accumulation, Technological Quality and Protein Composition in Bread and Durum Wheat

1997 ◽  
Vol 24 (2) ◽  
pp. 245 ◽  
Author(s):  
M. Corbellini ◽  
M.G. Canevar ◽  
L. Mazza ◽  
M. Ciaffi ◽  
D. Lafiandra ◽  
...  

High temperatures occurring during grain filling are known to affect wheat grain yield and quality considerably. In this paper we report the results of experiments carried out with two cultivars of bread wheat (Triticum aestivum L.) and two cultivars of durum wheat (Triticum durum Desf.). The plants, cultivated in pots, were subjected to 13 heat treatments (temperature up to 40°C) differing in duration and timing and starting 7 days after anthesis. Heat treatments were applied by temporary transfer of the pots to a glasshouse where the temperature rose to 40°C as a consequence of solar radiation for periods ranging from 5 to 30 days. The applied heat shocks substantially affected dry matter and protein accumulation in the different parts of the plant. Early heat shock (5 days with a total of 18 h of temperature in the range 35–40°C) caused a small reduction of kernel mass and no effect on protein per kernel; the damage was greater in the central and in the final stage of grain filling. Plants subjected to a progressive increase of temperature, or to an early heat shock, acquired thermotolerance to further heat shocks. Continuous exposure to very high temperatures from 27 days after pollination to maturity did not negatively affect grain yield and it facilitated the remobilisation of nitrogen from vegetative to reproductive organs. Rheological properties were severely affected by heat shocks at all stages of grain filling: 5 days of heat shock were sufficient to reduce mixing tolerance by 40–60%. These variations in rheological properties were accompanied by modification of the level of protein aggregation: soluble polymeric proteins and low molecular weight gliadins progressively increased according to the intensity of the stress, while insoluble polymeric proteins decreased. Our experiments, carried out in conditions close to the Mediterranean climate, indicate that the occurrence of very high temperature in the range 35–40°C during grain filling substantially affects dry matter and protein accumulation in the different parts of the plant. The formation of the complex protein aggregates responsible for positive dough mixing properties is significantly reduced by very high temperature. When heat shock came late in grain filling, grain yield and protein concentration were not negatively affected but a ‘dough weakening’ effect, which may reduce the commercial value of the production, is to be expected.


1996 ◽  
Vol 23 (6) ◽  
pp. 739 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas

Short periods of very high temperature (> 35�C) are common during the grain filling period of wheat, and can significantly alter mature protein composition and consequently grain quality. This study was designed to determine the stage of grain growth at which fractional protein accumulation is most sensitive to a short heat stress, and to examine whether varietal differences in heat tolerance are expressed consistently throughout the grain filling period. Two varieties of wheat differing in heat tolerance (cvv. Egret and Oxley, tolerant and sensitive, respectively) were exposed to a short (5 day) period of very high temperature (40�C max, for 6 h each day) at 5-day intervals throughout grain filling, from 15 to 50 days after anthesis. Grain samples were taken throughout grain growth and analysed for protein content and composition (albumin/globulin, monomer, SDS-soluble polymer and SDS-insoluble polymer) using size-exclusion high-performance liquid chromatography. The timing of heat stress exerted a significant influence on the accumulation of total wheat protein and its fractions, and protein fractions differed in their responses to the timing of heat stress. Furthermore, wheat genotype influenced both the sensitivity of fractional protein accumulation to heat stress and the stage during grain filling at which maximum sensitivity to heat stress occurred.



1995 ◽  
Vol 22 (6) ◽  
pp. 945 ◽  
Author(s):  
PJ Stone ◽  
R Savin ◽  
IF Wardlaw ◽  
ME Nicolas

The responses of wheat yield to moderately high (20-32�C) and very high temperatures (> 32�C) have been studied separately in the literature, but not in combination, despite the fact that this is usually how elevated temperatures occur in the field. In this study, controlled environment conditions were used in order to examine the interaction of moderately high and very high temperatures during grain filling and their effect on wheat yield. Specifically, we wished to test the hypothesis that cooler conditions would facilitate greater recovery of grain growth following a brief exposure to very high temperature. To this end, wheat was exposed to either 21/16 or 40/16�C (day/night) from 15-19 days after anthesis and subsequently grown under one of three moderately high temperature regimes until maturity: 21/16, 27/22 or 30/25�C. For all moderately high temperature treatments, a brief 'heat shock' significantly reduced mature individual kernel mass by 17%, on average. In the absence of 'heat shock', increasing moderately high temperature progressively reduced mature individual kernel mass by ca 2.5% for each 1�C increase in average daily temperature. After a 'heat shock' event, however, there was not a progressive decline in mature individual kernel mass with increasing moderately high temperature. A short period of very high temperature applied early in grain filling therefore reduced the response of wheat to subsequent moderately high temperatures. We conclude that the reduction in yield caused by 'heat shock' is not alleviated by cool post-shock conditions.





1998 ◽  
Vol 25 (1) ◽  
pp. 13 ◽  
Author(s):  
P.J. Stone ◽  
M.E. Nicolas

Two varieties of wheat differing in heat tolerance were exposed to very high temperature (40/19°C day/night) for periods of 1–10 days duration. Responses of grain dry matter, water and fractional protein accumulation to high temperature were monitored throughout grain filling in the heat- sensitive variety, and at maturity only in the heat-tolerant variety. Results are compared with controls maintained at 21/16°C day/night. As little as 1 day of heat treatment reduced kernel mass by 14% in the heat-sensitive variety (Oxley), but by only 5% in the heat-tolerant variety (Egret). In both varieties, the reduction of individual kernel mass due to high temperature increased linearly with increased duration of heat treatment, such that after the first day of heat stress, each additional day of treatment reduced mature individual kernel mass by a further 1.6%. For a given duration of heat treatment, the difference in response of the two varieties was constant (9%), indicating that the varietal difference in heat tolerance was maintained for both brief and extended periods of very high temperature. Responses of grain water content and fractional protein accumulation to duration of heat stress are discussed.



1996 ◽  
Vol 23 (5) ◽  
pp. 605 ◽  
Author(s):  
PJ Stone ◽  
ME Nicolas ◽  
IF Wardlaw

In this study, we have sought to identify the nature of the response to both moderately high (25-32�C) and very high (>32�C) temperatures by examining their interactive effects on the accumulation of functionally important proteins during grain-filling. In particular, we wished to determine if the deleterious effects of very high temperature could be alleviated by subsequently cool conditions. To this end, wheat cv. Oxley was exposed to either 21/16 or 40/16�C (day/night) from 15 to 19 days after anthesis and subsequently grown under one of three temperature regimes until maturity: 21/16 (control), 27/22 or 30/25�C. Grain samples were taken throughout grain growth and analysed for protein content and composition. Wheat proteins were separated and quantified as albumin,globulin, monomer, SDS-soluble polymer and SDS-insoluble polymer using size-exclusion high-performance liquid chromatography. The various protein fractions responded differentially and usually additively to moderately high and very high temperatures during grain-filling. Cool post-shock conditions did not alleviate the effects of very high temperature on grain protein composition. Heat treatments reduced polymer:monomer ratio because the accumulation of monomer was reduced less than that of polymer.



2005 ◽  
Vol 56 (1) ◽  
pp. 25 ◽  
Author(s):  
Francesco Giunta ◽  
Rosella Motzo

Comparisons among species can be a valuable approach to identifying traits important for plant breeding. Differences between 2 durum wheat (Duilio and Creso) and 1 triticale (Antares) cultivar have been analysed in a 2-year field trial in Sardinia (Italy), in order to define a more productive durum wheat ideotype for Mediterranean-type environments. The greater grain yield (569 v. 447 g/m2) and the lower protein percentage (9.2 v. 10.6%) of triticale cv. Antares compared with the durum wheat cultivars, at a similar level of biomass produced at heading, were analysed in terms of number of grains per unit surface and rate and duration of dry matter (DM) and nitrogen (N) accumulation, calculated from a logistic curve. When the single grains were considered, Antares showed a lower rate but a longer duration of DM and N accumulation in the more favourable season, resulting in lower DM (40 v. 54 mg) and N (0.7 v. 1.0 mg) contents in the grain. On the other hand, when data were expressed on a per unit surface basis, the greater spike fertility of Antares (53 v. 39 grains per spike) and its longer duration of accumulation, were responsible for similar or even greater amounts of DM and N accumulated in the grains per m2. Growth rate of single grains, although able to explain differences in single grain weight, cannot explain differences in grain weight per m2 and hence in yield, which mainly result from variation in the number of grains per spike. Nitrogen percentage of the grains decreased from the maximum values observed at the beginning of grain filling, until a constant final value attained before the end of DM and N accumulation. Rate is more important than duration in determining the quality characteristics of grains, as higher grain weights and protein percentages correspond to higher rates of DM and N accumulation.



2006 ◽  
Vol 25 (4) ◽  
pp. 309-318 ◽  
Author(s):  
I. Arduini ◽  
A. Masoni ◽  
L. Ercoli ◽  
M. Mariotti


1984 ◽  
Vol 35 (1) ◽  
pp. 1 ◽  
Author(s):  
GS Gill ◽  
WM Blacklow

A field experiment was conducted at Badgingarra, W.A., during 1981 to study competition between wheat (cv. Gamenya) and great brome (Bromus diandrus Roth.). Shoot dry matter per plant of wheat was reduced from 1.41 g per plant in wheat monoculture to 0.50 g per plant after competing for 71 days with great brome at density of 400 plants m-2. Tiller production was reduced from 605 tillers m-2 in monocultures of wheat to 336 tillers m-2 when growing in association with 400 plants m-2 of great brome. Competition with great brome reduced the concentration of nitrogen and phosphorus in wheat shoots; at Feeke's scale 3 (tillers formed) wheat plants competing with 400 plants m-2 of great brome had 3.15 � 0.09% (mean � s.e., w/w) nitrogen and 0.58% phosphorus against a concentration of 4.05 � 0.1% nitrogen and 0.77% phosphorus in the monoculture of wheat. The reduction in the nitrogen - and phosphorus concentrations in wheat shoots earlier than any significant reductions in their dry matter suggested that great brome competed with wheat for absorption of nitrogen and phosphorus. Competition with great brome also resulted in significant reduction in the grain yield (r = - 0.77) and yield determinants of wheat. Reduction in mass per grain (r = - 0.77) was probably due to competition with great brome for water during grain-filling.



2020 ◽  
Vol 12 (14) ◽  
pp. 5610
Author(s):  
Alireza Pour-Aboughadareh ◽  
Reza Mohammadi ◽  
Alireza Etminan ◽  
Lia Shooshtari ◽  
Neda Maleki-Tabrizi ◽  
...  

Durum wheat performance in the Mediterranean climate is limited when water scarcity occurs before and during anthesis. The present research was performed to determine the effect of drought stress on several physiological and agro-morphological traits in 17 durum wheat genotypes under two conditions (control and drought) over two years. The results of analysis of variance indicated that the various durum wheat genotypes responded differently to drought stress. Drought stress significantly reduced the grain filling period, plant height, peduncle length, number of spikes per plot, number of grains per spike, thousand grains weight, grain yield, biomass, and harvest index in all genotypes compared to the control condition. The heatmap-based correlation analysis indicated that grain yield was positively and significantly associated with phenological characters (days to heading, days to physiological maturity, and grain filling period), as well as number of spikes per plant, biomass, and harvest index under drought conditions. The yield-based drought and susceptible indices revealed that stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and harmonic mean (HM) were positively and significantly correlated with grain yields in both conditions. Based on the average of the sum of ranks across all indices and a three-dimensional plot, two genotypes (G9 and G12) along with the control variety (G1) were identified as the most tolerant genotypes. Among the investigated genotypes, the new breeding genotype G12 showed a high drought tolerance and yield performance under both conditions. Hence, this genotype can be a candidate for further multi-years and locations test as recommended for cultivation under rainfed conditions in arid and semi-arid regions.



1994 ◽  
Vol 21 (6) ◽  
pp. 791 ◽  
Author(s):  
CF Jenner

As temperature rises above 18-22�C, the observed decrease in the duration of deposition of dry matter in the kernel is not accompanied by a compensating increase in the rate of grain filling with the result that grain weight (and yield) is diminished at high temperature. Reduced starch content accounts for most of the reduction in grain dry matter at high temperature. Responses to temperature in the low temperature range, 20-30�C (the LTR), could possibly be ascribed to the temperature response characteristics of the reaction catalysed by soluble starch synthase (SSS), the enzyme synthesising starch. However, the rate of cell enlargement and the rate of accumulation of nitrogen in the grain also do not increase much as temperature rises, so other explanations are conceivable for the temperature responses in the LTR. Variation amongst cultivars of wheat in tolerance of high temperature is evident in the LTR. At temperatures above 30�C (in the high temperature range (HTR) between 30 and 40�C), even for short periods, the rate of starch deposition is slower than that observed at lower temperatures, an effect which is carried over after transfer from high to lower temperatures. This response is attributable to a reduction in the activity, possibly due to thermal denaturation, of SSS. Several forms of SSS are found in cereal endosperm, and some forms may be more tolerant of high temperature than others. Loss of enzyme activity at high temperature is swift, but is partly restored some time after transfer from hot to cool conditions. There appear to be two distinct mechanisms of response to elevated temperature, both resulting in a reduced grain weight through reduced starch deposition, but one of them is important only in the range of temperature above 30�C.



Sign in / Sign up

Export Citation Format

Share Document