Molecular characterisation of oestrogen receptor ERα and the effects of bisphenol A on its expression during sexual development in the Chinese giant salamander (Andrias davidianus)

2019 ◽  
Vol 31 (2) ◽  
pp. 261
Author(s):  
Yao Gao ◽  
Chenhao Yang ◽  
Huihui Gao ◽  
Liqing Wang ◽  
Changming Yang ◽  
...  

The aim of this study was to characterise the molecular structure of the oestrogen receptor ERα and to evaluate the effect of bisphenol A (BPA) on ERα expression during sexual development of the Chinese giant salamander (Andrias davidianus). The ERα cDNA of A. davidianus includes an open reading frame of 1755bp (encoding 584 amino acids), a 219-bp 5′ untranslated region (UTR) and a 611-bp 3′UTR. A polyadenylation signal was not found in the 3′UTR. Amino acid sequence analysis showed high homology between ERα of A. davidianus and that of other amphibians, such as Andrias japonicas (99.66% identity) and Rana rugose (81.06% identity). In 3-year-old A. davidianus, highest ERα expression was observed in the liver and gonads. During different developmental stages in A. davidianus (from 1 to 3 years of age), ERα expression in the testes increased gradually. ERα was localised in the epithelial cells of seminiferous lobules and in interstitial cells. ERα-positive cells were more abundant in the interstitial tissue during testicular development. ERα was located in the nucleus of oocytes during ovary development. We found that the sex of 6-month-old A. davidianus larvae could not be distinguished anatomically. The sex ratio did not change after larvae were treated with 10μM BPA for 1 month. However, BPA treatment reduced bodyweight and ERα expression in the gonads in male larvae.

2021 ◽  
Vol 869 (1) ◽  
pp. 012067
Author(s):  
J Qian ◽  
X Y Zhai ◽  
L Guo ◽  
W G Chen ◽  
J J Fu ◽  
...  

Abstract By using of the double antibody sandwich method of ELISA, the activities of five cytokines including IL-2, IL-4, IFN-α, IFN-β and TNF-α from the blood serum, liver, intestine and spleen at two developmental stages of Chinese giant salamander (Andrias davidianus) were determined to analyze the distribution of the cytokines. The result indicated that five cytokines were found in these four tissues, while their activities were different in different tissues and different ages. The highest activity of IL-2 and IL-4 was all present in blood serum of two different ages. The activity of IFN-α was the highest in blood serum of 1-year-old and in spleen of 2-year-old, respectively. The activity of IFN-β was also highest in blood serum of two different ages. The activity of TNF-α was highest in liver of two different ages. Thus, this study provides convincing reference for blood serum and liver as the most important distribution area of Chinese giant salamander.


2019 ◽  
Vol 20 (16) ◽  
pp. 3995 ◽  
Author(s):  
Shubo Jin ◽  
Yuning Hu ◽  
Hongtuo Fu ◽  
Sufei Jiang ◽  
Yiwei Xiong ◽  
...  

Gem-associated protein 2-like isoform X1 (GEM) was previously predicted to be involved in the sexual development of male Macrobrachium nipponense. In this study, we analyze the GEM functions in depth using quantitative polymerase chain reaction (qPCR), in situ hybridization, and RNA interference (RNAi). The full-length Mn-GEM cDNA sequence was 1018 base pairs (bp) long with an open reading frame of 777 bp encoding 258 amino acids. qPCR analysis of Mn-GEM in different tissues and developmental stages showed that Mn-GEM was highly expressed in the gonad and from post-larval developmental stage day 5 (PL5) to PL15, which indicated that GEM has potential roles in gonad differentiation and development in M. nipponense. In situ hybridization and qPCR analysis of various stages of the reproductive cycle of the testis and ovary indicated that GEM may promote spermatid development and gametogenesis in M. nipponense. After injecting with double-stranded RNA (dsRNA) of Mn-GEM, mRNA expression of Mn-insulin-like androgenic gland hormone (Mn-IAG) and the content of testosterone increased with the decrease of Mn-GEM expression, indicating that GEM has negative effects on the male sexual differentiation and development in M. nipponense. Results of this study highlight the functions of GEM in M. nipponense, which can be applied to future studies of male sexual development in M. nipponense and other crustacean species.


2020 ◽  
Vol 21 (6) ◽  
pp. 2246 ◽  
Author(s):  
Yanan Liu ◽  
Yiqun Li ◽  
Yongze Zhou ◽  
Nan Jiang ◽  
Yuding Fan ◽  
...  

Mx, Myxovirus resistance is an important interferon-stimulated protein that mediates antiviral responses. In this study, the expression and activities of Chinese giant salamander, Andrias davidianus Mx gene, AdMx, were investigated. The AdMx cDNA sequence contains an open reading frame (ORF) of 2112 nucleotides, encoding a putative protein of 703 aa. Meanwhile, AdMx possesses the conserved tripartite GTP binding motif and a dynamin family signature. qRT-PCR analysis revealed a broad expression of AdMx in vivo, with the highest expression levels in brain, kidney and spleen. The AdMx expression level in kidney, spleen and muscle significantly increased at 6 h after Chinese giant salamander iridovirus (GSIV) infection and peaked at 48 h, while that in muscle cell line (GSM) was not noticeably up-regulated until 72 h post infection. Additionally, a plasmid expressing AdMx was constructed and transfected into the Chinese giant salamander GSM cells. The virus load and gene copies in AdMx over-expressed cells were significantly reduced compared with those in the control cells. Moreover, compared to the control cells, a lower level of virus major capsid protein (MCP) synthesis in AdMx over-expressed cells was confirmed by Western blot. These results collectively suggest that Mx plays an important antiviral role in the immune responses against GSIV in Chinese giant salamander.


2019 ◽  
Vol 20 (24) ◽  
pp. 6149 ◽  
Author(s):  
Yiqun Li ◽  
Nan Jiang ◽  
Yuding Fan ◽  
Yong Zhou ◽  
Wenzhi Liu ◽  
...  

Chinese giant salamander iridovirus (GSIV) is the causative pathogen of Chinese giant salamander (Andrias davidianus) iridovirosis, leading to severe infectious disease and huge economic losses. However, the infection mechanism by GSIV is far from clear. In this study, a Chinese giant salamander muscle (GSM) cell line is used to investigate the mechanism of cell death during GSIV infection. Microscopy observation and DNA ladder analysis revealed that DNA fragmentation happens during GSIV infection. Flow cytometry analysis showed that apoptotic cells in GSIV-infected cells were significantly higher than that in control cells. Caspase 8, 9, and 3 were activated in GSIV-infected cells compared with the uninfected cells. Consistently, mitochondria membrane potential (MMP) was significantly reduced, and cytochrome c was released into cytosol during GSIV infection. p53 expression increased at an early stage of GSIV infection and then slightly decreased late in infection. Furthermore, mRNA expression levels of pro-apoptotic genes participating in the extrinsic and intrinsic pathway were significantly up-regulated during GSIV infection, while those of anti-apoptotic genes were restrained in early infection and then rose in late infection. These results collectively indicate that GSIV induces GSM apoptotic cell death involving mitochondrial damage, caspases activation, p53 expression, and pro-apoptotic molecules up-regulation.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 464
Author(s):  
Yuan-Jin Zhou ◽  
Juan Du ◽  
Shang-Wei Li ◽  
Muhammad Shakeel ◽  
Jia-Jing Li ◽  
...  

The rice leaf folder, Cnaphalocrocis medinalis is a major pest of rice and is difficult to control. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is a key enzyme in the chitin synthesis pathway in insects. In this study, the UAP gene from C. medinalis (CmUAP) was cloned and characterized. The cDNA of CmUAP is 1788 bp in length, containing an open reading frame of 1464 nucleotides that encodes 487 amino acids. Homology and phylogenetic analyses of the predicted protein indicated that CmUAP shared 91.79%, 87.89%, and 82.75% identities with UAPs of Glyphodes pyloalis, Ostrinia furnacalis, and Heortia vitessoides, respectively. Expression pattern analyses by droplet digital PCR demonstrated that CmUAP was expressed at all developmental stages and in 12 tissues of C. medinalis adults. Silencing of CmUAP by injection of double-stranded RNA specific to CmUAP caused death, slow growth, reduced feeding and excretion, and weight loss in C. medinalis larvae; meanwhile, severe developmental disorders were observed. The findings suggest that CmUAP is essential for the growth and development of C. medinalis, and that targeting the CmUAP gene through RNAi technology can be used for biological control of this insect.


2020 ◽  
Vol 51 (6) ◽  
pp. 2613-2623
Author(s):  
Zhanfu Li ◽  
Xiaochuan Chen ◽  
Yongjun Chen ◽  
Weilong Li ◽  
Qifeng Feng ◽  
...  

Gene ◽  
2003 ◽  
Vol 311 ◽  
pp. 93-98 ◽  
Author(s):  
Peng Zhang ◽  
Yue-Qin Chen ◽  
Yi-Fei Liu ◽  
Hui Zhou ◽  
Liang-Hu Qu

Sign in / Sign up

Export Citation Format

Share Document