scholarly journals Bovine scavenger receptor class A (SR-A) exhibit specific patterns of regulation in the endometrium during the oestrous cycle and early pregnancy

2019 ◽  
Vol 31 (6) ◽  
pp. 1078 ◽  
Author(s):  
A. Vitorino Carvalho ◽  
C. Eozenou ◽  
C. Richard ◽  
N. Forde ◽  
G. D. Healey ◽  
...  

In mammals, tight regulation of maternal endometrial function is critical for pregnancy success. In bovine species, endometrial expression of members of the scavenger receptor class A (SR-A) has been listed in high-throughput analyses, but very little is known about the involvement of these immune factors during implantation in mammals. To provide first insights into the contribution of SR-A to endometrial physiology, we analysed the expression and regulation of all members of SR-A (SR-A1, SR-A3–SR-A6) during the oestrous cycle and early pregnancy in cattle. Levels of SR-A1 were increased on Day 20 of pregnancy, whereas SR-A3 levels were increased on Day 13 of the oestrous cycle and of the pregnancy. Although SR-A4 levels were reduced on Day 20 of the oestrous cycle, they remained high in pregnant animals. SR-A5 levels increased by Day 13 of the oestrous cycle and decreased on Day 20, but remained high in pregnant animals. Interferon-τ does not affect SR-A gene expression, whereas progesterone regulates the expression of the SR-A3 and SR-A5 transcripts. Endometrial SR-A3 appeared significantly higher in cows carrying invitro-produced embryos than in AI cows. Our data suggest that members of the SR-A family are involved in endometrial remodelling and regulation of endometrial gland physiology, both processes being critical for implantation in mammals.

2021 ◽  
Author(s):  
Yi Li ◽  
Feng Peng ◽  
Xiangyun Tan ◽  
Jin Wang ◽  
Yeqing Xu

Abstract Background Colorectal cancer (CRC) exhibits high risks of morbidity and mortality. Objective To investigate the effect of scavenger receptor class A member 5 (SCRAR5) on CRC and its mechanism on modulation of cancer development. Methods The SCRAR5 expression in four kinds of CRC cell lines (SW620, SW480, HT29, and HCT116) was measured by quantitative PCR and western blotting, respectively. The effects of SCRAR5 abnormal expression on cell proliferation, apoptosis, and migration were analyzed by CCK-8 assay, EdU assay, colony-forming assay, flow cytometry assay, Transwell assay and wound healing assay, respectively. Meanwhile, the involvements of PI3K/AKT/mTOR pathway with the role of SCRAR5 were investigated by western blotting. Afterwards, the in vivo effects of SCRAR5 abnormal expression on CRC xenograft mice were finally investigated by evaluating tumor volume, apoptosis and Ki67 expression. Results SCRAR5 was lowly expressed in CRC cell lines, especially SW480 cells. Up-regulation of SCRAR5 significantly promoted cell apoptosis, reduced cell proliferation and migration in SW480 cells. Notably, SCRAR5 overexpression obviously inhibited the phosphorylation levels of PI3K, AKT, and mTOR. Reversely, SCRAR5 silence exhibited promoting effects on HT29 cells. Consistently, in vivo experiments also revealed that SCRAR5 overexpression remarkably suppressed tumor volume and Ki67 expression, as well as promoted cell apoptosis. Conclusions Overall, up-regulating of SCRAR5 obviously inhibited CRC tumor growth in vitro and in vivo, which might be related to PI3K/AKT/mTOR pathway.


2000 ◽  
Vol 164 (9) ◽  
pp. 4861-4867 ◽  
Author(s):  
Nick Platt ◽  
Hiroshi Suzuki ◽  
Tatsuhiko Kodama ◽  
Siamon Gordon

Reproduction ◽  
2003 ◽  
pp. 621-627 ◽  
Author(s):  
RD Geisert ◽  
MD Ashworth ◽  

Attachment of the placenta to the uterus in pigs involves extracellular interaction between the expanding trophoblastic membrane and the thick glycocalyx present on the uterine epithelial microvilli. Formation of complexes between members of inter-alpha-trypsin inhibitor family may function in the maintenance of the extracellular matrix. This study investigated the change in the inter-alpha-trypsin inhibitor heavy chains (ITIH1, ITIH2, ITIH3 and ITIH4) during the oestrous cycle and early pregnancy in pigs. Gene expression of ITIH1, ITIH2, ITIH3 and ITIH4 was detected in the endometrium of cyclic and pregnant gilts; however, gene expression of ITIH was not altered throughout the oestrous cycle or early pregnancy. Western blot analysis with an ITIH antiserum identified the possible linkage forms of ITIH with the serine protease inhibitor, bikunin. Pregnancy altered the release of the various inter-alpha-inhibitor forms from the endometrium during the period of trophoblastic attachment. The results from this study indicate that the inter-alpha-trypsin inhibitor family plays an important role in maintenance of the uterine surface glycocalyx during placental attachment in pigs.


Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 3214-3224 ◽  
Author(s):  
Sofia Mavridou ◽  
Maria Venihaki ◽  
Olga Rassouli ◽  
Christos Tsatsanis ◽  
Dimitris Kardassis

Scavenger receptor class B type I (SR-BI) facilitates the reverse transport of excess cholesterol from peripheral tissues to the liver via high-density lipoproteins. In steroidogenic tissues, SR-BI supplies cholesterol for steroid hormone production. We show here that the transcription of the human SR-BI gene is subject to feedback inhibition by glucocorticoid in adrenal and ovarian cells. SR-BI mRNA levels were increased in adrenals from corticosterone-insufficient Crh−/− mice, whereas corticosterone replacement by oral administration inhibited SR-BI gene expression in these mice. SR-BI mRNA levels were increased in adrenals from wild-type mice treated with metyrapone, a drug that blocks corticosterone synthesis. Experiments in adrenocortical H295R and ovarian SKOV-3 cells using cycloheximide and siRNA-mediated gene silencing revealed that glucocorticoid-mediated inhibition of SR-BI gene transcription requires de novo protein synthesis and the glucocorticoid receptor (GR). No direct binding of GR to the SR-BI promoter could be demonstrated in vitro and in vivo, suggesting an indirect mechanism of repression of SR-BI gene transcription by GR in adrenal cells. Deletion analysis established that the region of the human SR-BI promoter between nucleotides −201 and −62 is sufficient to mediate repression by glucocorticoid. This region contains putative binding sites for transcriptional repressors that could play a role in SR-BI gene regulation in response to glucocorticoid. In summary, this is the first report showing that glucocorticoid suppress SR-BI expression suggesting that steroidogenic tissues maintain steroid hormone homeostasis by prohibiting SR-BI-mediated high-density lipoprotein cholesterol uptake when the endogenous levels of glucocorticoid are elevated.


2016 ◽  
Vol 6 (7) ◽  
pp. 567-572
Author(s):  
Aamir Rana ◽  
Syed Sajjad Sattar ◽  
Afshann Shahzad ◽  
Ghulam Muhammad Ali ◽  
Yasir Waheed

Medicine ◽  
2019 ◽  
Vol 98 (40) ◽  
pp. e17471
Author(s):  
Ye Tian ◽  
Kai Zhou ◽  
Jing Hu ◽  
Ming-Feng Shan ◽  
Hong-Jian Chen ◽  
...  

Author(s):  
Takeshi Murakami ◽  
Yoshihiko Yamada ◽  
Takefumi Doi ◽  
Takao Hamakubo ◽  
Tatsuhiko Kodama

Sign in / Sign up

Export Citation Format

Share Document