Localisation and function of glucose transporter GLUT1 in chicken (Gallus gallus domesticus) spermatozoa: relationship between ATP production pathways and flagellar motility

2020 ◽  
Vol 32 (7) ◽  
pp. 697
Author(s):  
Rangga Setiawan ◽  
Chathura Priyadarshana ◽  
Atsushi Tajima ◽  
Alexander J. Travis ◽  
Atsushi Asano

Glucose plays an important role in sperm flagellar motility and fertility via glycolysis and oxidative phosphorylation, although the primary mechanisms for ATP generation vary between species. The glucose transporter 1 (GLUT1) is a high-affinity isoform and a major glucose transporter in mammalian spermatozoa. However, in avian spermatozoa, the glucose metabolic pathways are poorly characterised. This study demonstrates that GLUT1 plays a major role in glucose-mediated motility of chicken spermatozoa. Using specific antibodies and ligand, we found that GLUT1 was specifically localised to the midpiece. Sperm motility analysis showed that glucose supported sperm movement during incubation for 0–80min. However, this was abolished by the addition of a GLUT1 inhibitor, concomitant with a substantial decrease in glucose uptake and ATP production, followed by elevated mitochondrial activity in response to glucose addition. More potent inhibition of ATP production and mitochondrial activity was observed in response to treatment with uncouplers of oxidative phosphorylation. Because mitochondrial inhibition only reduced a subset of sperm movements, we investigated the localisation of the glycolytic pathway and showed glyceraldehyde-3-phosphate dehydrogenase and hexokinase I at the midpiece and principal piece of the flagellum. The results of this study provide new insights into the mechanisms involved in ATP production pathways in avian spermatozoa.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mario Barilani ◽  
Roberta Palorini ◽  
Giuseppina Votta ◽  
Roberta Piras ◽  
Giuseppe Buono ◽  
...  

Abstract Metabolism and mitochondrial biology have gained a prominent role as determinants of stem cell fate and function. In the context of regenerative medicine, innovative parameters predictive of therapeutic efficacy could be drawn from the association of metabolic or mitochondrial parameters to different degrees of stemness and differentiation potentials. Herein, this possibility was addressed in human mesenchymal stromal/stem cells (hMSC) previously shown to differ in lifespan and telomere length. First, these hMSC were shown to possess significantly distinct proliferation rate, senescence status and differentiation capacity. More potential hMSC were associated to higher mitochondrial (mt) DNA copy number and lower mtDNA methylation. In addition, they showed higher expression levels of oxidative phosphorylation subunits. Consistently, they exhibited higher coupled oxygen consumption rate and lower transcription of glycolysis-related genes, glucose consumption and lactate production. All these data pointed at oxidative phosphorylation-based central metabolism as a feature of higher stemness-associated hMSC phenotypes. Consistently, reduction of mitochondrial activity by complex I and III inhibitors in higher stemness-associated hMSC triggered senescence. Finally, functionally higher stemness-associated hMSC showed metabolic plasticity when challenged by glucose or glutamine shortage, which mimic bioenergetics switches that hMSC must undergo after transplantation or during self-renewal and differentiation. Altogether, these results hint at metabolic and mitochondrial parameters that could be implemented to identify stem cells endowed with superior growth and differentiation potential.


2018 ◽  
Vol 30 (2) ◽  
pp. 286 ◽  
Author(s):  
Montserrat Roura ◽  
María G. Catalá ◽  
Sandra Soto-Heras ◽  
Sondes Hammami ◽  
Dolors Izquierdo ◽  
...  

In this study we assessed the concentration of linoleic acid (LA) and linolenic acid (ALA) in follicular fluid of prepubertal goats according to follicle size (<3 mm or ≥3 mm) by gas chromatography and tested the addition of different LA and ALA (LA : ALA) concentration ratios (50 : 50, 100 : 50 and 200 : 50 µM) to the IVM medium on embryo development, mitochondrial activity, ATP concentration and relative gene expression (RPL19, ribosomal protein L19; SLC2A1, facilitated glucose transporter 1; ATF4, activating transcription factor 4; GPX1, glutathione peroxidase 1; HSPA5, heat-shock protein family A 70 kDa; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; DNMT1, DNA methyltransferase 1; GCLC, glutamate–cysteine ligase catalytic subunit; SOD1, superoxide dismutase 1). Oocytes were in vitro matured, fertilised or parthenogenetically activated and zygotes were cultured following conventional protocols. LA concentration ranged from 247 to 319 µM and ALA concentration from 8.39 to 41.19 µM without any effect of follicle size. Blastocyst production from the different groups was: control FCS (22.33%) and BSA (19.63%), treatments 50 : 50 (22.58%), 100 : 50 (21.01%) and 200 : 50 (9.60%). Oocytes from the 200 : 50 group presented higher polyspermy and mitochondrial activity compared with controls and the rest of the treatment groups. No differences were observed in ATP concentration or relative expression of the genes measured between treatment groups. In conclusion, the low number of blastocysts obtained in the 200 : 50 group was caused by a high number of polyspermic zygotes, which could suggest that high LA concentration impairs oocyte membranes.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 128-128
Author(s):  
Alexandria Snider ◽  
Matthew S Crouse ◽  
Shelby Rosasco ◽  
Kaitlin M Epperson ◽  
Emmalee J Northrop-Albrecht ◽  
...  

Abstract Increased numbers of antral follicles are associated with greater fertility and a uterine environment that is more supportive of early embryonic development in beef heifers. Glucose is a primary energy source for embryos and glucose concentrations are elevated in uterine luminal fluid (ULF) of pregnant heifers. We hypothesized that ULF glucose concentrations and endometrial transcript abundance for glucose transporters at d16 after insemination would be greater in heifers with increased numbers of antral follicles. Heifers classified with either increased (32 ± 1.1) or diminished (14.7 ± 1.1) antral follicle counts were selected and artificially inseminated following the Select Synch protocol (d0). At d16 after insemination, heifers were sent to the abattoir and reproductive tracts were collected to retrieve conceptuses to determine pregnancy. Uterine luminal fluid was collected, the endometrium was biopsied, total RNA was extracted and glucose transporter transcript abundance was determined. Data were analyzed using the MIXED procedure of SAS with antral follicle group, pregnancy status, and the interaction as fixed effects. Glucose concentrations in ULF were greater (P &lt; 0.05) in heifers with increased antral follicle numbers compared to heifers with diminished numbers (122.65 ± 11.91 vs 84.12 ± 12.42 mg/dL). Glucose ULF concentrations were increased (P &lt; 0.05) in pregnant vs. non-pregnant heifers (124.84 ± 12.81 vs 81.93 ± 11.50 mg/dL). Endometrial glucose transporter 1 (GLUT1) transcript abundance was increased in pregnant heifers (P &lt; 0.01) but was not different due to antral follicle number or the interaction. Therefore, differences in glucose concentrations associated with antral follicle number may be due to differences in GLUT1 transcription before d16 or due to differences in protein abundance or functionality. Taken together, heifers with increased number of antral follicles may have increased energy availability in the uterus for trophoblast proliferation and function. USDA is an equal opportunity provider and employer.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2783-2792 ◽  
Author(s):  
Hyun Sik Jun ◽  
Young Mok Lee ◽  
Yuk Yin Cheung ◽  
David H. McDermott ◽  
Philip M. Murphy ◽  
...  

Abstract G6PC3 deficiency, characterized by neutropenia and neutrophil dysfunction, is caused by deficiencies in the endoplasmic reticulum (ER) enzyme glucose-6-phosphatase-β (G6Pase-β or G6PC3) that converts glucose-6-phosphate (G6P) into glucose, the primary energy source of neutrophils. Enhanced neutrophil ER stress and apoptosis underlie neutropenia in G6PC3 deficiency, but the exact functional role of G6Pase-β in neutrophils remains unknown. We hypothesized that the ER recycles G6Pase-β–generated glucose to the cytoplasm, thus regulating the amount of available cytoplasmic glucose/G6P in neutrophils. Accordingly, a G6Pase-β deficiency would impair glycolysis and hexose monophosphate shunt activities leading to reductions in lactate production, adenosine-5′-triphosphate (ATP) production, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Using annexin V–depleted neutrophils, we show that glucose transporter-1 translocation is impaired in neutrophils from G6pc3−/− mice and G6PC3-deficient patients along with impaired glucose uptake in G6pc3−/− neutrophils. Moreover, levels of G6P, lactate, and ATP are markedly lower in murine and human G6PC3-deficient neutrophils, compared with their respective controls. In parallel, the expression of NADPH oxidase subunits and membrane translocation of p47phox are down-regulated in murine and human G6PC3-deficient neutrophils. The results establish that in nonapoptotic neutrophils, G6Pase-β is essential for normal energy homeostasis. A G6Pase-β deficiency prevents recycling of ER glucose to the cytoplasm, leading to neutrophil dysfunction.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10637
Author(s):  
Piya Prajumwongs ◽  
Orawan Waenphimai ◽  
Kulthida Vaeteewoottacharn ◽  
Sopit Wongkham ◽  
Kanlayanee Sawanyawisuth

Reversine is a selective inhibitor of mitotic kinase monopolar spindle 1 (MPS1) and has been reported as an anticancer agent in various cancers. The effects of reversine on bile duct cancer, cholangiocarcinoma (CCA), a lethal cancer in Northeastern Thailand, were investigated. This study reports that reversine inhibited cell proliferation of CCA cell lines in dose- and time-dependent manners but had less inhibitory effect on an immortalized cholangiocyte cell line. Reversine also triggered apoptotic cell death by decreasing anti-apoptotic proteins, Bcl-XL and Mcl-1, increasing Bax pro-apoptotic protein and activating caspase-3 activity. Moreover, reversine induced autophagic cell death by increasing LC3-II and Beclin 1 while decreasing p62. Reversine activated autophagy via the AKT signaling pathway. Additionally, this study demonstrated for the first time that reversine could diminish the expression of Hypoxia-Inducible Factor 1- alpha (HIF-1α) and glucose transporter 1 (GLUT1), resulting in a reduction of glucose uptake and energy production in CCA cell lines. These findings suggest that reversine could be a good candidate as an alternative or supplementary drug for CCA treatment.


2019 ◽  
Vol 316 (4) ◽  
pp. E622-E634 ◽  
Author(s):  
Chih-Wei Wu ◽  
Chun-Ying Hung ◽  
Hajime Hirase ◽  
You-Lin Tain ◽  
Wei-Chia Lee ◽  
...  

Excessive maternal high-fructose diet (HFD) during pregnancy and lactation has been reported to cause metabolic disorders in the offspring. Whether the infant’s brain metabolism is disturbed by maternal HFD is largely unknown. Brain energy metabolism is elevated dramatically during fetal and postnatal development, whereby maternal nutrition is a key factor that determines cellular metabolism. Astrocytes, a nonneuronal cell type in the brain, are considered to support the high-energy demands of neurons by supplying lactate. In this study, the effects of maternal HFD on astrocytic glucose metabolism were investigated using hippocampal primary cultures of female infants. We found that glycolytic capacity and mitochondrial respiration and electron transport chain were suppressed by maternal HFD. Mitochondrial DNA copy number and mitochondrial transcription factor A expression were suppressed by maternal HFD. Western blots and immunofluorescent images further indicated that the glucose transporter 1 was downregulated whereas the insulin receptor-α, phospho-insulin receptor substrate-1 (Y612) and the p85 subunit of phosphatidylinositide 3-kinase were upregulated in the HFD group. Pioglitazone, which is known to increase astrocytic glucose metabolism, effectively reversed the suppressed glycolysis, and lactate release was restored. Moreover, pioglitazone also normalized oxidative phosphorylation with an increase of cytosolic ATP. Together, these results suggest that maternal HFD impairs astrocytic energy metabolic pathways that were reversed by pioglitazone.


2013 ◽  
Vol 83 (3) ◽  
pp. 188-197 ◽  
Author(s):  
Rebecca L. Sweet ◽  
Jason A. Zastre

It is well established that thiamine deficiency results in an excess of metabolic intermediates such as lactate and pyruvate, which is likely due to insufficient levels of cofactor for the function of thiamine-dependent enzymes. When in excess, both pyruvate and lactate can increase the stabilization of the hypoxia-inducible factor 1-alpha (HIF-1α) transcription factor, resulting in the trans-activation of HIF-1α regulated genes independent of low oxygen, termed pseudo-hypoxia. Therefore, the resulting dysfunction in cellular metabolism and accumulation of pyruvate and lactate during thiamine deficiency may facilitate a pseudo-hypoxic state. In order to investigate the possibility of a transcriptional relationship between hypoxia and thiamine deficiency, we measured alterations in metabolic intermediates, HIF-1α stabilization, and gene expression. We found an increase in intracellular pyruvate and extracellular lactate levels after thiamine deficiency exposure to the neuroblastoma cell line SK-N-BE. Similar to cells exposed to hypoxia, there was a corresponding increase in HIF-1α stabilization and activation of target gene expression during thiamine deficiency, including glucose transporter-1 (GLUT1), vascular endothelial growth factor (VEGF), and aldolase A. Both hypoxia and thiamine deficiency exposure resulted in an increase in the expression of the thiamine transporter SLC19A3. These results indicate thiamine deficiency induces HIF-1α-mediated gene expression similar to that observed in hypoxic stress, and may provide evidence for a central transcriptional response associated with the clinical manifestations of thiamine deficiency.


Sign in / Sign up

Export Citation Format

Share Document