Expression of polo-like kinase (PLK) in the mouse placenta and ovary

1999 ◽  
Vol 11 (1) ◽  
pp. 31 ◽  
Author(s):  
Noriyuki Takai ◽  
Jun Yoshimatsu ◽  
Yoshihiro Nishida ◽  
Isao Miyakawa ◽  
Ryoji Hamanaka ◽  
...  

The polo-like kinase (PLK) is a mammalian serine/threonine kinase involved in cell cycle regulation. Much evidence for the role of PLK in the cell cycle has come from studies of cultured cells; however, little is known about its function or even expression in vivo . The present study examined the features of PLK expression in the mouse placenta and ovary. Immunohistochemical studies showed that PLK is highly expressed in the basement membrane of the endometrial gland, in some endothelial cells, in endometrium after embryo implantation, in trophoblastic tissue invading the decidua, in the ovarian stroma and in some lutein bodies. In contrast, PLK was not detectable by immunohistochemistry in endometrial stroma before decidualization, in decidua, in trophoblastic tissue not invading the decidua or in ovarian follicles. PLK expression seemed to be correlated with the expression of proliferation cellular nuclear antigen (PCNA) in many placental and ovarian cells, reflecting a role in cellular proliferation. Nevertheless, in ovarian stroma and lutein bodies where PCNA was not expressed, PLK was strongly expressed. This finding indicates that PLK may have some post mitotic functions in certain specialized cell types.

1996 ◽  
Vol 271 (5) ◽  
pp. G780-G790 ◽  
Author(s):  
J. K. Westwick ◽  
J. Fleckenstein ◽  
M. Yin ◽  
S. Q. Yang ◽  
C. A. Bradham ◽  
...  

Adenosine 3',5'-cyclic monophosphate (cAMP) prevents epidermal growth factor (EGF)-induced DNA synthesis in many types of cultured cells, including hepatocytes, but its effects on cellular proliferation in vivo are unknown. This study compares the effects of supplemental cAMP on hepatocyte proliferation induced in vivo by 70% partial hepatectomy (PH) and in vitro by EGF and determines the effects of cAMP on AP-1, a family of growth-regulatory transcription factors, and the kinase cascades that normally activate AP-1. Although injection of dibutyryladenosine 3',5'-cyclic monophosphate (30 mg/kgip) at the time of PH increased liver cAMP concentrations at least 100-fold for several hours, it did not inhibit hepatic incorporation of [3H]thymidine or proliferating cell nuclear antigen expression 24 h after PH. cAMP treatment led to a complete inhibition of extracellular signal-related kinase (ERK) activity and transiently reduced NH2-terminal Jun nuclear kinase (JNK) activity after PH but did not decrease the expression of c-jun mRNA or protein. Consistent with the known cAMP stimulation of jun-B in cultured cells, cAMP treatment increased jun-B mRNA, protein, and DNA binding activity post-PH. Surprisingly, cAMP treatment enhanced Raf kinase activity after PH in rats. In primary hepatocyte cultures, supplemental cAMP inhibited JNK and ERK activity, total AP-1 and c-Jun transcriptional activities, and DNA synthesis. Thus elevated cAMP inhibited ERK and JNK activity in culture and in vivo and inhibited hepatocyte proliferation in culture but not in vivo. This suggests that in vivo mechanisms compensate for cAMP inhibition of certain growth-related signaling cascades and emphasizes potential risks of extrapolating from simple cell culture systems to explain physiology in intact animals.


2012 ◽  
Vol 209 (13) ◽  
pp. 2409-2422 ◽  
Author(s):  
Heiyoun Jung ◽  
Benjamin Hsiung ◽  
Kathleen Pestal ◽  
Emily Procyk ◽  
David H. Raulet

The NKG2D stimulatory receptor expressed by natural killer cells and T cell subsets recognizes cell surface ligands that are induced on transformed and infected cells and facilitate immune rejection of tumor cells. We demonstrate that expression of retinoic acid early inducible gene 1 (RAE-1) family NKG2D ligands in cancer cell lines and proliferating normal cells is coupled directly to cell cycle regulation. Raet1 genes are directly transcriptionally activated by E2F family transcription factors, which play a central role in regulating cell cycle entry. Induction of RAE-1 occurred in primary cell cultures, embryonic brain cells in vivo, and cells in healing skin wounds and, accordingly, wound healing was delayed in mice lacking NKG2D. Transcriptional activation by E2Fs is likely coordinated with posttranscriptional regulation by other stress responses. These findings suggest that cellular proliferation, as occurs in cancer cells but also other pathological conditions, is a key signal tied to immune reactions mediated by NKG2D-bearing lymphocytes.


Author(s):  
Shawn Regis ◽  
Manisha Jassal ◽  
Sina Youssefian ◽  
Nima Rahbar ◽  
Sankha Bhowmick

Fibronectin plays a crucial role in adhesion of several cell types, mainly due to the fact that it is recognized by at least ten different integrin receptors. Since most cell types can bind to fibronectin, it becomes involved in many various biological processes. The interaction of cells with ECM proteins such as fibronectin provides the signals affecting morphology, motility, gene expression, and survival of cells [1]. Fibronectin exists in both soluble and insoluble forms; soluble fibronectin is secreted by cells and exits in cell media or body fluids, whereas insoluble fibronectin exists in tissues or the extracellular matrix of cultured cells [2]. The ability to control adsorption of fibronectin on tissue engineering scaffolds would therefore play a huge role in controlling cell attachment and survival in vivo. This can be achieved through surface functionalization of the scaffolds. The goal of these studies is to use molecular dynamics (MD) simulations to mechanistically understand how fibronectin adsorption is enhanced by surface functionalization of submicron scaffolds.


2018 ◽  
Vol 116 (1) ◽  
pp. 303-312 ◽  
Author(s):  
Erol C. Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

Mitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially localized 3XHA epitope tag (MITO-Tag) for the fast isolation of mitochondria from cultured cells to generate MITO-Tag Mice. Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology, and our strategy should be generally applicable for studying other mammalian organelles in specific cell types in vivo.


Blood ◽  
2011 ◽  
Vol 118 (3) ◽  
pp. 723-735 ◽  
Author(s):  
Hedia Chagraoui ◽  
Mira Kassouf ◽  
Sreemoti Banerjee ◽  
Nicolas Goardon ◽  
Kevin Clark ◽  
...  

Abstract Megakaryopoiesis is a complex process that involves major cellular and nuclear changes and relies on controlled coordination of cellular proliferation and differentiation. These mechanisms are orchestrated in part by transcriptional regulators. The key hematopoietic transcription factor stem cell leukemia (SCL)/TAL1 is required in early hematopoietic progenitors for specification of the megakaryocytic lineage. These early functions have, so far, prevented full investigation of its role in megakaryocyte development in loss-of-function studies. Here, we report that SCL critically controls terminal megakaryocyte maturation. In vivo deletion of Scl specifically in the megakaryocytic lineage affects all key attributes of megakaryocyte progenitors (MkPs), namely, proliferation, ploidization, cytoplasmic maturation, and platelet release. Genome-wide expression analysis reveals increased expression of the cell-cycle regulator p21 in Scl-deleted MkPs. Importantly, p21 knockdown-mediated rescue of Scl-mutant MkPs shows full restoration of cell-cycle progression and partial rescue of the nuclear and cytoplasmic maturation defects. Therefore, SCL-mediated transcriptional control of p21 is essential for terminal maturation of MkPs. Our study provides a mechanistic link between a major hematopoietic transcriptional regulator, cell-cycle progression, and megakaryocytic differentiation.


2018 ◽  
Author(s):  
Erol Can Bayraktar ◽  
Lou Baudrier ◽  
Ceren Özerdem ◽  
Caroline A. Lewis ◽  
Sze Ham Chan ◽  
...  

ABSTRACTMitochondria are metabolic organelles that are essential for mammalian life, but the dynamics of mitochondrial metabolism within mammalian tissues in vivo remains incompletely understood. While whole-tissue metabolite profiling has been useful for studying metabolism in vivo, such an approach lacks resolution at the cellular and subcellular level. In vivo methods for interrogating organellar metabolites in specific cell-types within mammalian tissues have been limited. To address this, we built on prior work in which we exploited a mitochondrially-localized 3XHA epitope-tag (“MITO-Tag”) for the fast isolation of mitochondria from cultured cells to now generate “MITO-Tag Mice.” Affording spatiotemporal control over MITO-Tag expression, these transgenic animals enable the rapid, cell-type-specific immunoisolation of mitochondria from tissues, which we verified using a combination of proteomic and metabolomic approaches. Using MITO-Tag Mice and targeted and untargeted metabolite profiling, we identified changes during fasted and refed conditions in a diverse array of mitochondrial metabolites in hepatocytes and found metabolites that behaved differently at the mitochondrial versus whole-tissue level. MITO-Tag Mice should have utility for studying mitochondrial physiology and our strategy should be generally applicable for studying other mammalian organelles in specific cell-types in vivo.


Endocrinology ◽  
1997 ◽  
Vol 138 (10) ◽  
pp. 4308-4315 ◽  
Author(s):  
Akinyinka Omigbodun ◽  
Piotr Ziolkiewicz ◽  
Cheryl Tessler ◽  
John R. Hoyer ◽  
Christos Coutifaris

Abstract Osteopontin (OPN), a matrix glycosylated phosphoprotein, has been proposed to play a role(s) in basic cellular processes, such as neovascularization and tissue remodeling, which are essential to placental morphogenesis and embryo implantation. We have shown OPN to be expressed by cytotrophoblasts of the chorionic villus, and a putative progesterone regulatory element in the OPN promoter suggests hormonal regulatory control. This led us to test the hypothesis that progesterone regulates OPN expression in human cytotrophoblasts. Cytotrophoblasts isolated from human placentas were treated with combinations of progesterone, RU486, and/or aminoglutethimide, and their expression of OPN was assessed by Northern hybridization and immunocytochemistry. The expression of OPN messenger RNA (mRNA) declined as trophoblasts aggregated, but rebounded at later times when syncytia and mononuclear cytotrophoblasts coexisted in culture. Progesterone increased OPN mRNA expression by aggregating mononuclear cytotrophoblasts. Aminoglutethimide suppression of endogenous steroidogenesis by syncytiotrophoblasts inhibited OPN expression, whereas the addition of exogenous progesterone to cells treated with aminoglutethimide reversed this inhibitory effect. These observations were confirmed at the protein level by immunocytochemistry. Treatment of cytotrophoblasts with both progesterone and RU486 inhibited the up-regulatory effect on OPN mRNA associated with exposure to progesterone alone, further confirming a direct effect of progesterone. We conclude that progesterone up-regulates OPN expression in human cytotrophoblasts, and we propose that in vivo, progesterone secretion by syncytiotrophoblasts regulates the expression of OPN by the underlying cytotrophoblasts. As the receptors for OPN,α v integrins, are expressed by syncytiotrophoblasts, we postulate that these paracrine regulatory mechanisms contribute to the adhesive and/or signaling events between the two trophoblast cell types of the chorionic villus.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ethan P. Metz ◽  
Erin L. Wuebben ◽  
Phillip J. Wilder ◽  
Jesse L. Cox ◽  
Kaustubh Datta ◽  
...  

Abstract Background Quiescent tumor cells pose a major clinical challenge due to their ability to resist conventional chemotherapies and to drive tumor recurrence. Understanding the molecular mechanisms that promote quiescence of tumor cells could help identify therapies to eliminate these cells. Significantly, recent studies have determined that the function of SOX2 in cancer cells is highly dose dependent. Specifically, SOX2 levels in tumor cells are optimized to promote tumor growth: knocking down or elevating SOX2 inhibits proliferation. Furthermore, recent studies have shown that quiescent tumor cells express higher levels of SOX2 compared to adjacent proliferating cells. Currently, the mechanisms through which elevated levels of SOX2 restrict tumor cell proliferation have not been characterized. Methods To understand how elevated levels of SOX2 restrict the proliferation of tumor cells, we engineered diverse types of tumor cells for inducible overexpression of SOX2. Using these cells, we examined the effects of elevating SOX2 on their proliferation, both in vitro and in vivo. In addition, we examined how elevating SOX2 influences their expression of cyclins, cyclin-dependent kinases (CDKs), and p27Kip1. Results Elevating SOX2 in diverse tumor cell types led to growth inhibition in vitro. Significantly, elevating SOX2 in vivo in pancreatic ductal adenocarcinoma, medulloblastoma, and prostate cancer cells induced a reversible state of tumor growth arrest. In all three tumor types, elevation of SOX2 in vivo quickly halted tumor growth. Remarkably, tumor growth resumed rapidly when SOX2 returned to endogenous levels. We also determined that elevation of SOX2 in six tumor cell lines decreased the levels of cyclins and CDKs that control each phase of the cell cycle, while upregulating p27Kip1. Conclusions Our findings indicate that elevating SOX2 above endogenous levels in a diverse set of tumor cell types leads to growth inhibition both in vitro and in vivo. Moreover, our findings indicate that SOX2 can function as a master regulator by controlling the expression of a broad spectrum of cell cycle machinery. Importantly, our SOX2-inducible tumor studies provide a novel model system for investigating the molecular mechanisms by which elevated levels of SOX2 restrict cell proliferation and tumor growth.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2571-2571
Author(s):  
Zhi Hong Lu ◽  
Jason T. Books ◽  
Timothy James Ley

Abstract Mammalian proteins containing “cold-shock” domains belong to the most evolutionarily conserved family of nucleic acid-binding proteins known in bacteria, plants, and animals. One of these proteins, YB-1, has been implicated in basic cellular functions such as cell proliferation and responses to environmental stresses. In mammalian cells, YB-1 has been shown to shuttle between the nuclear and cytoplasmic compartments. Within the nucleus, YB-1 interacts with several DNA-and pre-mRNA-binding proteins, and has been implicated in nuclear activities, including transcriptional regulation, chromatin remodeling, and pre-mRNA splicing. YB-1 is also abundant in the cytoplasm, where it binds nonspecifically to mRNA, and may act as a general regulator of mRNA stability, cytoplasmic localization, and translation. Thus, YB-1 has been proposed to function as a multifunctional regulator for the control of gene expression in both the nucleus and cytoplasm. YB-1 overexpression has been frequently detected in a variety of human cancers, often associated with unfavorable clinical outcomes. However, it remains unclear whether YB-1 overexpression contributes directly to the malignant phenotype, or whether it is simply a non-causal “marker” associated with rapid cell growth (and poor prognostic outcomes). To further assess the role of this protein in health and disease, we created mice deficient for YB-1. Complete loss of function of this gene results in fully-penetrant late embryonic and perinatal lethality. Morphological and histological analyses revealed that YB-1−/− embryos displayed major developmental and functional defects, including neurological abnormalities, hemorrhage, and respiratory failure, which probably contributed to lethality. Growth retardation occurred in all late-stage embryos, and was the result of hypoplasia in multiple organ systems. Consistent with these in vivo results, fibroblasts isolated from YB-1−/− embryos (MEFs) grew slowly and entered senescence prematurely in vitro; these defects were rescued by ectopic expression of a GFP-tagged human YB-1 cDNA. This data suggests that YB-1 plays an important cell-autonomous role in cell proliferation and prevention of premature senescence. We further showed that loss of YB-1 in early passage MEFs resulted a delay in G0/G1 to S-phase progression, and a defect in a transcriptional mechanism that normally represses the expression of the G1-specific CDK inhibitor gene p16Ink4a, and the p53 target genes p21Cip1 and Mdm2. However, YB-1 does not cause “global” changes in the transcriptome, the proteome, or protein synthesis efficiency. As predicted, p16Ink4a and p21Cip1 double knockdown by siRNA treatment led to an increase in the rate of cell proliferation, and an extension of proliferative capacity during late passages in YB-1−/− cells. Furthermore, YB-1 deficiency reduced the ability of MEFs to proliferate normally in response to c-Myc overexpression. In conclusion, our data has revealed that YB-1 is required for normal mouse development and survival, and that it plays an important role in supporting rapid cellular proliferation both in vivo and in vitro. Our data further suggests that YB-1 is a cell cycle progression regulator that is important for preventing the early onset of senescence in cultured MEF cells. This data raises the possibility that disregulated expression of YB-1 may contribute to malignant phenotypes by supporting rapid cell cycle progression, and by protecting cells from cytotoxic stresses.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 27-27
Author(s):  
Rong Lu ◽  
Agnieszka Czechowicz ◽  
Jun Seita ◽  
Irving L. Weissman

Abstract Abstract 27 Hematopoietic stem cells (HSCs) sustain the blood and immune systems through a complex differentiation process. This process involves several steps of lineage commitment and forms a paradigm for understanding cellular development, differentiation, and malignancy. While this step-wise differentiation has been extensively studied at the population level, little is known about the lineage commitment of individual HSC clones. The importance of understanding HSC differentiation at the clonal level has been raised by several recent studies suggesting that individual HSCs differentially contribute to various blood cell types and that the aggregate HSC differentiation at the population level is an amalgamation of the diverse lineage commitments of individual HSC clones. The distinct differentiation of individual HSCs may also be accentuated by their regulatory microenvironments, HSC niche. HSC niche may not affect all HSCs in an organism equally, and may instead act directly on resident HSC clones through direct contact or by tuning local cytokine concentrations. Knowledge of HSC clonal level lineage commitment will reveal new insights into HSC regulatory mechanisms and will improve our understanding of aging, immune deficiency, and many hematopoietic disorders involving an unbalanced hematopoietic system. Here, we provide a comprehensive map of in vivo HSC clonal development in mice. The clonal map was derived from the simultaneous tracking of hundreds of individual mouse HSCs in vivo using genetic barcodes. These unique barcodes were delivered into HSCs using a lentiviral vector to obtain a one-to-one mapping between barcodes and HSCs. Barcoded HSCs were then transplanted into recipient mice using standard procedures. Genetic barcodes from donor derived HSCs and their progenies were examined twenty-two weeks after transplantation using high-throughput sequencing. We found that the dominant differentiation of HSC clones is always present in pre-conditioned mice. In these recipients, a small fraction of engrafted HSCs become dominantly abundant at the intermediate progenitor stages, but not at the HSC stage. Thus, clonal dominance is a characteristic of HSC differentiation but not of HSC self-renewal. Additionally, the dominant differentiation of HSC clones exhibits distinct expansion patterns through various stages of hematopoiesis. We provide evidence that observed HSC lineage bias arises from dominant differentiation at distinct lineage commitment steps. In particular, myeloid bias arises from dominant differentiation at the first lineage commitment step from HSC to MPP, whereas lymphoid bias arises from dominant differentiation at the last lineage commitment step from CLP to B cells. We also show that dominant differentiation and lineage bias are interrelated and together delineate discrete HSC lineage commitment pathways. These pathways describe how individual HSC clones produce differential blood quantities and cell types. Multiple clonal differentiation pathways can coexist simultaneously in a single organism, and mutually compensate to sustain overall blood production. Thus, the distinct HSC differentiation characteristics uncovered by clonal analysis are not evident at the population level. We have also identified the lineage commitment profiles of HSC clones belonging to each pathway. These profiles elucidate the cellular proliferation and development of HSCs at the clonal level and demonstrate that distinct modes of HSC regulation exist in vivo. In summary, our in vivo clonal mapping reveals discrete clonal level HSC lineage commitment pathways. We have identified the cellular origins of clonal dominance and lineage bias, which may be the key hematopoietic stages where blood production and balance can be manipulated. These discoveries based on clonal level analysis are unexpected and unobtainable from conventional studies at the population level. Together, they open new avenues of research for studying hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document