Relationship between phosphorus concentration in surface runoff and a novel soil phosphorus test procedure (DGT) under simulated rainfall

Soil Research ◽  
2011 ◽  
Vol 49 (6) ◽  
pp. 523 ◽  
Author(s):  
W. J. Dougherty ◽  
S. D. Mason ◽  
L. L. Burkitt ◽  
P. J. Milham

There is a need to be able to identify soils with the potential to generate high concentrations of phosphorus (P) in runoff, and a need to predict these concentrations for modelling and risk-assessment purposes. Attempts to use agronomic soil tests such as Colwell P for such purposes have met with limited success. In this research, we examined the relationships between a novel soil P test (diffuse gradients in thin films, DGT), Colwell P, P buffering index (PBI), and runoff P concentrations. Soils were collected from six sites with a diverse range of soil P buffering properties, incubated for 9 months with a wide range of P additions, and then subjected to rainfall simulation in repacked trays growing pasture. For all soil and P treatment combinations, the relationship between DGT (0–10 mm) and runoff P was highly significant (P < 0.001, r2 = 0.84). Although there were significant curvilinear relationships between Colwell P and runoff P for individual soils, there were large differences in these relationships between soils. However, the inclusion of a P buffering measure (PBI) as an explanatory variable resulted in a highly significant model (P < 0.001, R2 = 0.82) that explained between-soil variability. We conclude that either DGT, or Colwell P and PBI, can be used to provide a relative measure of runoff P concentration.


1995 ◽  
Vol 35 (7) ◽  
pp. 979 ◽  
Author(s):  
DJ Reuter ◽  
CB Dyson ◽  
DE Elliott ◽  
DC Lewis ◽  
CL Rudd

Data from more than 580 field experiments conducted in South Australia over the past 30 years have been re-examined to estimate extractable soil phosphorus (P) levels related to 90% maximum yield (C90) for 7 crop species (wheat, barley, oilseed rape, sunflower, field peas, faba beans, potato) and 3 types of legume-based pasture (subterranean clover, strawberry clover, annual medics). Data from both single-year and longer term experiments were evaluated. The C90 value for each species was derived from the relationship between proportional yield responsiveness to applied P fertiliser rates (determined as grain yield in crops and herbage yield in ungrazed pastures) and extractable P concentrations in surface soils sampled before sowing. Most data assessments involved the Colwell soil P test and soils sampled in autumn to 10 cm depth. When all data for a species were considered together, the relationship between proportional yield response to applied P and soil P status was typically variable, particularly where Colwell soil P concentration was around C90. When data could be grouped according to common soil types, soil surface texture, or P sorption indices (selected sites), better relationships were discerned. From such segregated data sets, different C90 estimates were derived for either different soil types or soil properties. We recommend that site descriptors associated with the supply of soil P to plant roots be determined as a matter of course in future P fertiliser experiments in South Australia. Given the above, we also contend that the Colwell soil P test is reasonably robust for estimating P fertiliser requirements for the diverse range of soils in the agricultural regions of the State. In medium- and longer term experiments, changes in Colwell soil P concentration were measured in the absence or presence of newly applied P fertiliser. The rate of change (mg soil P/kg per kg applied P/ha) appeared to vary with soil type (or soil properties) and, perhaps, cropping frequency. Relatively minor changes in soil P status were observed due to different tillage practices. In developing P fertiliser budgets, we conclude that a major knowledge gap exists for estimating the residual effectiveness of P fertiliser applied to diverse soil types under a wide range of South Australian farming systems.



Soil Systems ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 61 ◽  
Author(s):  
Carlos ◽  
Francisco ◽  
Wedisson ◽  
Leonardus ◽  
Jörg ◽  
...  

Bulk soil phosphorus speciation by X-ray absorption spectroscopy (XAS) using fluorescence yield-mode measurements is an important tool for phosphorus research because of the low soil P contents. However, when measuring in fluorescence mode, increasing the concentration of the absorbing atom can dampen the XAS spectral features because of self-absorption and affect the linear combination (LC) fitting results. To reduce the self-absorption for samples of high P contents, thick boron nitride diluted samples are produced, yet the effects of self-absorption on P speciation results via LC fitting of P K-edge XANES spectroscopy, and the possible benefits of data processing optimization are unknown. Toward this end, we produced a series of ternary standard mixtures (calcium-iron-aluminum phosphates) and an example soil sample both diluted using boron nitride over a range from 1 to ~900 mmol kg−1 for the soil sample and up to ~6000 mmol kg−1 for the standard mixture. We show that by optimizing background subtraction and normalization values, consistent results with less than 10% error can be obtained for samples with up to 300 mmol kg−1 P. Our results highlight the applicability of optimized P K-edge XANES fitting across a wide range of concentrations encountered in natural environments.



2011 ◽  
Vol 91 (3) ◽  
pp. 339-347 ◽  
Author(s):  
Y. T. Wang ◽  
T. Q. Zhang ◽  
Q. C. Hu ◽  
I. P. O'Halloran ◽  
C. S. Tan ◽  
...  

Wang, Y. T., Zhang, T. Q., Hu, Q. C., O'Halloran, I. P., Tan, C. S. and Reid, K. 2011. Temporal patterns of soil phosphorus release to runoff during a rainfall event as influenced by soil properties and its effects on estimating soil P losses. Can. J. Soil Sci. 91: 339–347. The phosphorus (P) released in soil runoff during a rainfall event varies as labile P is depleted, and the dynamic pattern can be a function of soil P content and other soil properties. This study was conducted to determine the temporal pattern of runoff dissolved reactive P (DRP) concentration during a simulated rainfall event and the controlling soil properties. Soil samples were collected from six soil types across the province of Ontario, with 10 sites for each, to provide a wide range of soil test P (STP) levels. The instantaneous DRP concentration in surface runoff created during the rainfall event could be predicted by time t (min, since the onset of surface runoff) through a power function: DRP=αt−β, where α and β are constants representing initial potential of soil P release to runoff as DRP at the onset of surface runoff and DRP decrease rate with time, respectively. The values of α and β for a given soil could be determined by DPSM3-2 (Mehlich-3 P/Mehlich-3 Al) using the following formulas:[Formula: see text] The description of the temporal pattern of runoff DRP concentration during a rainfall event with the constants estimated using DPSM3−2 can aid in the prediction of soil runoff DRP loss.



Soil Research ◽  
2017 ◽  
Vol 55 (7) ◽  
pp. 657 ◽  
Author(s):  
Megan H. Ryan ◽  
Mark Tibbett ◽  
Hans Lambers ◽  
David Bicknell ◽  
Phillip Brookes ◽  
...  

High concentrations of nutrients in surface soil present a risk of nutrient movement into waterways through surface water pathways and leaching. Phosphorus (P) is of particular concern because of its role in aquatic system eutrophication. We measured nutrients under annual pastures on a beef farm and a dairy farm in the Peel–Harvey catchment, Western Australia. Soils were sampled in 10-mm increments to 100mm depth in March, June and September. Plant litter contained approximately 300–550mg kg–1 Colwell-extractable P. Extractable soil P was strongly stratified, being approximately 100–225mg kg–1 (dairy) and 50–110mg kg–1 (beef) in the top 10mm and <40mg kg–1 at 40–50mm depth. Total P and extractable potassium were also highly stratified, whereas sulfur was less strongly stratified. Shoot nutrient concentrations indicated that nitrogen was often limiting and sulfur was sometimes limiting for pasture growth: concentrations of P were often much greater than required for adequate growth (>4mg g–1). We conclude that high P concentrations at the soil surface and in litter and shoots are a source of risk for movement of P from farms into waterways in the Peel–Harvey catchment.



1998 ◽  
Vol 38 (7) ◽  
pp. 745 ◽  
Author(s):  
W. R. Gibson

Summary. This paper describes the part played by soil and plant analysis in decisions about fertilisers used on a mixed pastoral and cropping farm at Scone, in the Northern Midlands of Tasmania. Measurements of phosphorus and potassium concentrations in soils provide an essential framework for choosing fertilisers for crops and pastures. Use of lime with certain crops is determined by pH measurements. Neither soil nor plant analysis are used in choosing nitrogenous fertilisers. Fifteen paddocks were tested 7–8 years after initial soil tests (Colwell extracts). Phosphorus concentrations (mean ± s.e.) had risen by 13 ± 5 µg/g (P<0.05) and potassium by 89 ± 19 µg/g (P<0.001). In addition, the relationship between changes in these concentrations and the total phosphorus or potassium applied to individual paddocks was examined. Phosphorus concentration rose (P<0.001) by 5.9 µg/g for each 10 kg/ha additional phosphorus applied over the 7–8 years. Application of phosphorus at 7 kg/ha annually was enough to maintain soil phosphorus levels. No such relationship was detected for potassium. Application of lime at 4 t/ha raised the pH by about 1 unit. These results provide some reassurance about the behaviour of soils on Scone in response to the practices used in commercial mixed farming. The importance for the farmer of analyses being reliable is stressed, as is the need for well-based interpretation of the analytical results in order that the yield responses to fertilisers can be foreseen. Evidence about the financial returns produced by the increased yields is often lacking, especially for grazing enterprises.



Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 802
Author(s):  
Saba B. Mohammed ◽  
Daniel K. Dzidzienyo ◽  
Adama Yahaya ◽  
Muhammad L. Umar ◽  
Muhammad F. Ishiyaku ◽  
...  

To ameliorate the impact of soil phosphorus (P) deficiency on cowpea, the use of P-based fertilizers is recommended. Plant zinc (Zn) is an essential nutrient required by plants in a wide range of processes, such as growth hormone production and metabolism. However, a negative association between plant Zn content and high P application has been reported in some crops. There are few reports about soil P application and plant Zn content relationship on cowpea. Thus, this study investigated the response of cowpeas to three P rates in the screenhouse (0, 1.5, and 30 mg P/kg) and field (0, 10, and 60 kg P2O5/ha) and their effects on plant P and Zn content, biomass, and grain yield. In the screenhouse, shoot and root dry weights, and shoot P and Zn content were measured. Shoot dry weight, grain yield, grain P, and Zn contents were determined from field plants. Higher rates of P led to increased shoot biomass and grain yield of the field experiment but were not associated with a significant change in shoot or grain Zn content. There was not a significant correlation between grain yield and Zn content in high soil P (p < 0.05). The effect of higher P application on reduced plant Zn contents may be genotype-dependent and could be circumvented if genotypes with high Zn content under high soil P are identified.



Soil Research ◽  
2004 ◽  
Vol 42 (7) ◽  
pp. 763 ◽  
Author(s):  
M. D. A. Bolland ◽  
R. J. Gilkes

Thirteen field experiments distributed throughout south-western Australia examined the relationship between percentage of maximum grain yield of wheat (Triticum aestivum L. cv. Aroona) and Colwell soil phosphorus (P) values. These calibration data were fitted to a linear equation, and the slope values for the 13 sites were compared with the P buffer capacity (PBC) of the soils. There was no systematic relationship between these variables except for 3 adjacent sites at Badgingarra and for 3 adjacent sites at Newdegate. We conclude that differences in climate and site conditions have a greater effect than PBC on Colwell soil P test calibration when widely separated sites are compared.



2021 ◽  
Vol 12 ◽  
Author(s):  
Filipe G. Andrade Godoi ◽  
Isabel Forner-Piquer ◽  
Basilio Randazzo ◽  
Hamid R. Habibi ◽  
Fabiana L. Lo Nostro ◽  
...  

Di-isononyl phthalate (DiNP) is a plasticizer reported to elicit hormone-like activity and disrupt metabolism and reproduction in fish and other vertebrates. In general, phthalates have been used at high concentrations beyond reported environmental levels to assess their adverse effects on fish gonadal physiology. The present study exposed adult female zebrafish to a wide range of DiNP concentrations [0.42 µg L−1 (10−9 M), 4.2 µg L−1 (10−8 M), and 42 µg L−1 (10−7 M)] for 21 days. We evaluated gene expression profiles related to apoptosis, autophagy, and oxidative stress; DNA fragmentation (TUNEL assay: terminal deoxynucleotidyl transferase dUTP nick end labeling) and caspase activity (CAS3) were also examined. Exposure to 0.42 and 4.2 µg L−1 upregulated the genes coding for tnfa and baxa, sod1, prkaa1, respectively. CAS3 immunohistochemistry revealed a higher number of positive vitellogenic oocytes in ovaries exposed to 0.42 µg L−1. Subsequently, we examined the relationship between CAS3 signaling and DNA fragmentation. Accordingly, DNA fragmentation was observed in vitellogenic follicles of fish exposed to 0.42 and 4.2 μg L−1. Our results demonstrate that follicular atresia can occur after exposure to environmental levels of DiNP for 21 days, which may adversely affect the reproductive performance of female zebrafish in a non-monotonic manner.



1967 ◽  
Vol 47 (3) ◽  
pp. 157-161 ◽  
Author(s):  
M. K. John ◽  
A. L. van Ryswyk ◽  
J. L. Mason

Soil and tissue samples were collected from 192 alfalfa fields representing a wide variety of cultivated soils in British Columbia. The phosphorus content of the alfalfa was correlated with the amounts of available P extracted by eight soil-test methods. The Olsen method, Bray's P1 method, and a modification of Bray's P1 method showed high correlation with plant phosphorus over a wide range of soils; the other five methods showed lower correlation. The relationship observed between soil phosphorus and plant phosphorus differed with soil pH and soil order for the various available-phosphorus methods used. None of the methods gave significant correlations with the Solonetzic and Podzolic soils. Multiple correlation studies indicated that soil pH and texture were required to explain the contribution of available phosphorus in soil, as measured by any soil-test method, to phosphorus in alfalfa.



1991 ◽  
Vol 48 (11) ◽  
pp. 2285-2291 ◽  
Author(s):  
Sophie Lalonde ◽  
John A. Downing

The relationship between epiphyton biomass and water column total phosphorus concentration (TP) was studied in macrophyte beds in 11 lakes covering a wide range of trophic status (TP = 5.8–72.8 μg∙L−1). Phosphorus concentration was a poor predictor of epiphyton biomass when considered alone. Our data do not agree with previous studies that found that epiphyton biomass increased continuously with TP. Instead, we found a very weak, nonlinear relationship between TP and epiphyton biomass, where epiphyton biomass increased up to TP≈39 μg∙L−1, and decreased at higher TP. Season and sampling depth accounted for significantly more variation in epiphyton biomass than did TP. Epiphyton biomass increased with depth in oligotrophic lakes but decreased with depth in eutrophic lakes. Seven common species of macrophytes of differing architecture developed significantly different epiphyton biomass. Macrophytes with flexible, ribbon-like leaves supported lower epiphyton biomass than species of broad-leaved or whorled architecture. The effect of host type on epiphyton algae biomass was not, however, as great as the influence of environmental variables.



Sign in / Sign up

Export Citation Format

Share Document