The forms of potassium and potassium adsorption in some virgin soils from south-western Australia

Soil Research ◽  
1999 ◽  
Vol 37 (4) ◽  
pp. 695 ◽  
Author(s):  
Y. Pal ◽  
R. J. Gilkes ◽  
M. T. F. Wong

This investigation was undertaken to determine the potassium (K) status and adsorption behaviour of 227 samples from horizons of 41 representative virgin soil profiles, extending from Geraldton in the north to the Great Southern district of Western Australia. X-ray diffraction analysis of random powder of whole soil indicated that quartz is the dominant mineral and some soils contain significant amounts of feldspars. Clay mineralogy is dominated by kaolinite but minor quantities of illite are present in some soils. Most south-west Australian agricultural soils contain little available K: NaHCO3-extractable K (NaHCO3-K, median value 0·09 cmol K/kg, equivalent to 35 mg K/kg soil), HNO3-extractable K (HNO3-K, median value 0·30 cmol K/kg, equivalent to 117 mg K/kg soil), and total K (XRF determined K, median value, 17 cmol K/kg, equivalent to 6630 mg K/kg soil). The proportion of water-soluble K (H2O-K) ranges from 0 to 3·5% of total K, 0 to 76% of HNO3-K, and 0 to nearly 100% of exchangeable K. Exchangeable K ranges from 0 to 100% (median value 37%) of HNO3-K. These are relatively high proportions of H2O-K and exchangeable K compared with soils from many other parts of the world. The amounts of all forms of K variously increase or decrease downwards in the soil profile depending on both clay content and mineralogy. The commonly assumed increase in K with clay content alone is invalid. The soils mostly have low-to-moderate values of K sorption capacity, ranging from 5% to 67% (median value 14%) of added K (initially 4·1 mM K/L, equivalent to 4·1 cmol K/kg). otassium sorption isotherms conform well to the Freundlich equation. The inability of the Langmuir equation to describe the data may indicate that there are several types of K sorption sites in these soils. The Gapon coefficient KG varied widely from 0·04 to 29·8 (L/mol) ½ [median value 5·4 (L/mol) ½ ].

Clay Minerals ◽  
1975 ◽  
Vol 10 (5) ◽  
pp. 369-386 ◽  
Author(s):  
A. H. Weir ◽  
E. C. Ormerod ◽  
I. M. I. El Mansey

AbstractInvestigation of the clay mineralogy of forty-seven samples of sediments from boreholes in the western Nile Delta, an area little studied hitherto, and from surface sites on the mouth of the Nile and adjacent coast shows that the clay fractions consist of dominant iron-rich, dioctahedral, randomly interstratified smectite-illitcs together with kaolinite, illite and chlorite.Amounts of the constituent minerals of the clay fractions are estimated from their X-ray diffraction intensities, supported by selective dissolution chemical data, and a new method is used to estimate the proportion of expanding layers in randomly interstratified smectite-illite. The results, which confirm and extend the work of previous investigators, also show that there is little correlation between the clay mineral composition and texture of the sediments, only kaolinite being weakly linearly correlated with clay content. Transformation of 2:1 layer silicate minerals occurs within the buried sediments ; chlorite is transformed and smectite and illite interlayers redistributed within randomly interstratified smectite-illites.


2021 ◽  
Author(s):  
Antonio Romero-Baena ◽  
Cinta Barba-Brioso ◽  
Alicia Ross ◽  
Isabel González

<p>Agricultural soils in mining areas usually accumulate potentially toxic elements (PTEs) that can become a health risk to humans by entering the trophic chain. In this study, five small agricultural plots close to Riotinto mines (SW Spain) were studied, with the aims of comparing the concentration of PTEs with respect to the regional (South Portuguese Zone) baseline and conducting availability studies in order to determine the contamination of soils. Chemical composition, total and clay mineralogy, and edaphic parameters were determined in topsoil and subsoil samples to characterize the soils, and single extractions were conducted to assess the mobility. The mineralogy of the soils was composed of quartz and phyllosilicates, with small amounts of feldspars and occasionally containing hematite and calcite. The texture ranged from sandy to silty loam, the pH was slightly acidic, and high contents of organic matter were found. Total concentrations of trace elements correlated with the texture, the content in iron oxy-hydroxides and the pH. The values of As, Pb, Cu, and Zn exceeded the regional baseline even in sites unaffected by mining. The results suggest that a widespread sampling is necessary to determine the local background. The most water-soluble element was As, due to the competition of organic matter for sorption sites. The content of Cu, Cr and Zn extracted with different methods were higher in sandy soils with low iron oxy-hydroxides content. Monoammonium phosphate and EDTA extractions seemed to remove elements from organic matter and iron oxy-hydroxides. The extracted fractions of As and metals reached up to 10-30 wt%.  Despite the high total concentrations of the element in soils, they generally showed low available proportions, especially with water and ammonium acetate extractants. The results suggest that the soils are not necessarily a risk to humans and higher investigation efforts are necessary to assess the availability of PTEs and their transfer to plants.</p>


Clay Minerals ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 739-749 ◽  
Author(s):  
K. Nabiollahy ◽  
F. Khormali ◽  
K. Bazargan ◽  
SH. Ayoubi

AbstractThe relationships between different pools of K, i.e. exchangeable, HN03-extractable, mineral and total, were investigated as a function of clay mineralogy and soil development in soils of Kharkeh Research Station, Kurdestan Province, western Iran. Samples from different horizons often pedons were selected and analysed for clay mineralogy and K fractionation. X-ray diffraction patterns revealed that clay minerals in the soils studied were similar in type, while their abundances were different. The smectite content was significantly greater in Vertisols than in the other soils. The results of K fractionation showed that mineral K and HN03-extractable K (exchangeable and nonexchangeable, respectively) and the clay content of the soils containing lesser illite (10–30%) were significantly different from those with more illite (30–50%). Moreover, the regression slopes between water-soluble and NE4OAc-extractable K were lower in soils with more smectite due mainly to the presence of larger specific surface areas for K sorption in smectitic soils. Based on soil evolution and different forms of K, the soils studied were grouped in two major categories: (1) Vertisols and (2) Entisols, Inceptisols and Mollisols. There were greater contents of all forms of K in Vertisols than in the other soil orders. This was mainly related to the greater clay content and the dominance of smectite in the clay fraction of Vertisols.


Clay Minerals ◽  
2009 ◽  
Vol 44 (3) ◽  
pp. 327-337 ◽  
Author(s):  
S. Rezapour ◽  
A. A. Jafarzadeh ◽  
A. Samadi ◽  
S. Oustan

AbstractThe potassium pools of five major physiographic units of the Urmia region situated in western Azerbaijan province, north-west Iran, were studied to determine the distribution of K forms as functions of clay mineralogy and physiographic units. Soil samples from horizons of ten pedons were selected and analysed for physiochemical properties, clay mineralogy and forms of K. X-ray diffraction patterns revealed that the soils were similar in clay-mineral compositions, consisting of illite, smectite, chlorite, and kaolinite, for the different physiographic units, but vary in the relative amounts of these minerals. The illite content was highest in piedmont plain (P.P) followed by plateau (Pl), river alluvial plain (R.A.P), colluvial alluvial plain (C.A.R) and lowland (L.L) units. Smectite content was highest in Pl followed by P.P, L.L, R.A.P and C.A.P units. Several processes, such as the diversity of weathering rate, biocyclying processes of K accumulation, geomorphologic conditions and soil formation processes, caused significant differences in most K forms in the soils. A wide variation in total K (HF-extractable K) (0.54–1.1%), non-exchangeable K (280–450 mg kg–1) and exchangeable K (217–330 mg kg–1) occurred among the physiographic units, corresponding to variations in their mineralogical compositions, mainly the abundance of illite. Significant differences (P ⩽ 0.05) were found for K, HNO3-extractable K and non-exchangeable K between the soils with large illite contents (30–50%) and with small illite contents (10–30%). A significant positive relationship existed between mineral K and illite content (r2 = 0.85, P ⩽ 0.001) and non-exchangeable K and illite content (r2 = 0.84, P ⩽ 0.001). The results indicated that these pools of K are mainly released from the frayed edges and wedge zones of illite.


Soil Research ◽  
2004 ◽  
Vol 42 (8) ◽  
pp. 865 ◽  
Author(s):  
M. E. Alves ◽  
A. Lavorenti

Soil pH measured in 1 m NaF (pHNaF) can be a useful tool for soil classification and to provide better advice on the chemical management of agricultural soils in the tropics. In this study, we verified the effects of clay mineralogy on pHNaF values of non-allophanic soils of São Paulo State, Brazil. Fourteen subsurface soil samples were characterised for chemical properties, clay content, clay mineralogy, and for pHNaF values, which were measured in the whole soil and in both natural and deferrified (dithionite-treated) clay fractions. Regression and correlation analyses showed that both ammonium-oxalate-extractable Al (Alo) and gibbsite contents have positive relationships with both clay and soil pHNaF values. On the other hand, kaolinite is inversely related to the pHNaF measured in the clay and has nonsignificant effect on soil pHNaF. X-ray diffraction patterns of dithionite-treated clays did not show disruption of kaolinite or gibbsite after the treatment with 1 m NaF, suggesting that the displacement of surface OH groups by F– seems to be the main mechanism associated with the pH increase verified in the NaF solution after its contact with the deferrified clay fraction. The smaller influence of hematite on pHNaF seems to be due to its correlation to Alo. Goethite and ammonium-oxalate-extractable Fe (Feo) exert no effect on pHNaF. Finally, the relationships observed in the present study strongly suggest that pHNaF values <10.3 measured in non-allophanic kaolinitic soils with low levels of non-humified organic matter are essentially due to their smaller Alo and gibbsite contents, which agrees with the direct correlation verified between pHNaF and soil weathering degree.


Clay Minerals ◽  
2001 ◽  
Vol 36 (3) ◽  
pp. 277-294 ◽  
Author(s):  
B. Velde

AbstractA survey of the clay fraction at the surface of 86 loam and silt loam agricultural soils from the Central United States was undertaken to observe the possible influences of climate and parent material (dominantly phyllosilicates in this study) on the clay mineralogy of the upper portions of the soils, for the most part in Mollisol–Alfisol order soils.Decomposed X-ray diffraction spectra show that the most abundant clay minerals are two disordered illite-smectite (I-S) minerals, one with ∼50% smectite layers and another, less abundant, disordered I-S phase with 20% smectite. These minerals usually co-exist in the same samples. The charge site in both of these I-S minerals is both beidellitic and montmorillonitic in the expanding layers. A relatively large proportion of these smectite layers (up to 20%) are of high charge.There seems to be a convergence in mineralogy towards mixed-layer phases formed under a range of mid-Continent climates from a range of phyllosilicate parent materials.


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 71
Author(s):  
Andrew Hurst ◽  
Michael Wilson ◽  
Antonio Grippa ◽  
Lyudmyla Wilson ◽  
Giuseppe Palladino ◽  
...  

Mudstone samples from the Moreno (Upper Cretaceous-Paleocene) and Kreyenhagen (Eocene) formations are analysed using X-ray diffraction (XRD) and X-ray fluorescence (XRF) to determine their mineralogy. Smectite (Reichweite R0) is the predominant phyllosilicate present, 48% to 71.7% bulk rock mineralogy (excluding carbonate cemented and highly bio siliceous samples) and 70% to 98% of the <2 μm clay fraction. Opal CT and less so cristobalite concentrations cause the main deviations from smectite dominance. Opal A is common only in the Upper Kreyenhagen. In the <2 μm fraction, the Moreno Fm is significantly more smectite-rich than the Kreyenhagen Fm. Smectite in the Moreno Fm was derived from the alteration of volcaniclastic debris from contemporaneous rhyolitic-dacitic magmatic arc volcanism. No tuff is preserved. Smectite in the Kreyenhagen Fm was derived from intense sub-tropical weathering of granitoid-dioritic terrane during the hypothermal period in the early to mid-Eocene; the derivation from local volcanism is unlikely. All samples had chemical indices of alteration (CIA) indicative of intense weathering of source terrane. Ferriferous enrichment and the occurrence of locally common kaolinite are contributory evidence for the intensity of weathering. Low concentration (max. 7.5%) of clinoptilolite in the Lower Kreyenhagen is possibly indicative of more open marine conditions than in the Upper Kreyenhagen. There is no evidence of volumetrically significant silicate diagenesis. The main diagenetic mineralisation is restricted to low-temperature silica phase transitions.


1962 ◽  
Vol 42 (2) ◽  
pp. 296-301 ◽  
Author(s):  
J. S. Clark ◽  
J. E. Brydon ◽  
H. J. Hortie

X-ray diffraction analysis was used to identify the clay minerals present in fourteen subsoil samples that were selected to represent some more important clay-bearing deposits in British Columbia. The clay mineralogy of the subsoils varied considerably but montmorillonitic clay minerals tended to predominate in the water-laid deposits of the south and illite in the soil parent materials of the Interior Plains region of the northeastern part of the Province.


2020 ◽  
Vol 235 (10) ◽  
pp. 465-475
Author(s):  
Ozge Gungor ◽  
Seda Nur Kertmen Kurtar ◽  
Muhammet Kose

AbstractSeven biguanide derivatives were prepared by the nucleophilic reaction between dicyandiamide and p-substitute aniline derivatives or memantine or adamantine under acidic conditions. The cyclization of the biguanide compounds were also conducted via acetone to give 1,3,5-triazine derivatives. The structures of the synthesized compounds were characterized by analytical methods. The solid state structures of [HL5]Cl, [H2L7]Cl2, [HL1a]Cl and [HL5a]Cl were investigated by X-ray diffraction study. The acetylcholinesterase and α-glucosidase inhibitor properties of the compounds were then evaluated by the spectroscopic method. The compounds were found to show considerable acetylcholinesterase and α-glucosidase inhibitory activities compared to the approved drugs. The cyclization of biguanide derivatives with acetone did not affect inhibition of acetylcholinesterase, yet increased the α-glucosidase inhibition.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1008 ◽  
Author(s):  
Qilei Yang ◽  
Chang Zu ◽  
Wengang Li ◽  
Weiwei Wu ◽  
Yunlong Ge ◽  
...  

Paclitaxel (PTX) is a poor water-soluble antineoplastic drug with significant antitumor activity. However, its low bioavailability is a major obstacle for its biomedical applications. Thus, this experiment is designed to prepare PTX crystal powders through an antisolvent precipitation process using 1-hexyl-3-methylimidazolium bromide (HMImBr) as solvent and water as an antisolvent. The factors influencing saturation solubility of PTX crystal powders in water in water were optimized using a single-factor design. The optimum conditions for the antisolvent precipitation process were as follows: 50 mg/mL concentration of the PTX solution, 25 °C temperature, and 1:7 solvent-to-antisolvent ratio. The PTX crystal powders were characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, high-performance liquid chromatography–mass spectrometry, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Raman spectroscopy, solid-state nuclear magnetic resonance, and dissolution and oral bioavailability studies. Results showed that the chemical structure of PTX crystal powders were unchanged; however, precipitation of the crystalline structure changed. The dissolution test showed that the dissolution rate and solubility of PTX crystal powders were nearly 3.21-folds higher compared to raw PTX in water, and 1.27 times higher in artificial gastric juice. Meanwhile, the bioavailability of PTX crystal increased 10.88 times than raw PTX. These results suggested that PTX crystal powders might have potential value to become a new oral PTX formulation with high bioavailability.


Sign in / Sign up

Export Citation Format

Share Document