Effect of organic matter and allophane on adsorption of polyethylene glycols onto some soils

Soil Research ◽  
1991 ◽  
Vol 29 (4) ◽  
pp. 515 ◽  
Author(s):  
T Ishida

Polyethylene glycols were adsorbed onto some soils that had been previously leached with hot water to remove water-soluble organic substances and then either oven-dried or kept moist. The amount of glycol adsorbed onto the dried soils decreased as organic matter content increased. The amount adsorbed onto the moist soils showed a different trend. The parameters for an adsorption equilibrium model based on statistical thermodynamic considerations, namely the equilibrium constant, Ka, and the total volume of the adsorbed phase, w1(0), were estimated in order to interpret this adsorption behaviour. The change in Ka (indicating the change in nature of the soil surface due to drying) significantly depended on allophane content, while the value of w1(0) (representing the amount of surface exposed) was more affected by organic matter content. In addition, the relationship of w1(0) to the liquid limit confirms the validity of w1(0) in modelling soil-water systems.

1966 ◽  
Vol 46 (2) ◽  
pp. 133-138 ◽  
Author(s):  
N. S. Miljkovic ◽  
B. C. Matthews ◽  
M. H. Miller

The available boron content of the genetic horizons of eight Ontario soils was determined using a hot-water extraction and a sunflower test. The available boron was highest in the surface horizons and decreased in the zones of eluviation to a level equal to or lower than that in the parent material. The content in the horizons was generally higher than that in the C horizons.The water-soluble boron was closely related to the organic matter content in a quadratic regression (R2 = 0.691). When pH and clay content were included in regressions, a positive organic matter × pH component was the single most important variable, explaining 64.4% of the variability. Additional terms involving clay content and pH did not greatly increase the R2 value.


Weed Science ◽  
1985 ◽  
Vol 33 (6) ◽  
pp. 861-867 ◽  
Author(s):  
C. John Peter ◽  
Jerome B. Weber

Significantly higher rates of butralin [4-(1,1-dimethylethyl)-N-(1-methylpropyl)-2,6-dinitrobenzenamine] were required to produce the same level of weed control as trifluralin [2,6-dinitro -N,N-dipropyl-4-(trifluoromethyl) benzenamine] when applied to soybeans [Glycine max(L.) Merr.] on seven different soils in the field. Higher rates of butralin were also required to control barnyardgrass [Echinochloa crus-galli(L.) Beauv. ♯ ECHCG] in growth chamber studies. No differences in the extent of soil adsorption of trifluralin and butralin were apparent; therefore, differences in efficacy could not be attributed to differences in soil adsorption. Herbicide rates required for 80% weed control and Freundlich K-values (adsorption capacity indices) were mostly highly correlated with soil organic-matter content and soil surface area as measured by benzyl ethyl ether (BEE) and ethylene glycol monoethyl ether (EGME) on nine soils. Analysis of the organic-matter content of the nine soils by 10 soil testing laboratories resulted in highly significant differences among laboratories.


Soil Research ◽  
2012 ◽  
Vol 50 (1) ◽  
pp. 7 ◽  
Author(s):  
Thomas Keller ◽  
Anthony R. Dexter

The plastic limits (lower plastic limit, PL; and liquid limit, LL) are important soil properties that can yield information on soil mechanical behaviour. The objective of this paper is to study the plastic limits of agricultural soils as functions of soil texture and organic matter (OM) content. The plastic limits were highly related to the clay content. The LL was more strongly correlated with clay than was PL, but the reasons are unclear. Interestingly, PL was virtually unaffected by clay content for soils with clay contents below ~35%. The OM had a strong effect on the plastic limits. This effect was clearly demonstrated when analysing soils of similar texture with a range of OM. We present equations (pedotransfer functions) for estimation of PL, LL, and plasticity index (PI) from soil texture and OM. Finally, we predict that the clay content must be ≥10% for soils without OM to be plastic; however, soils with <10% clay can be plastic if OM is present. More research is needed to investigate OM effects on soil consistency.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 587f-587
Author(s):  
Nanik Setyowati ◽  
Leslie A. Weston

Dithiopyr (Dimension, Monsanto) is a turfgrass herbicide currently under evaluation for use in ornamentals. Granular herbicide depth and seed placement were evaluated in greenhouse studies with tolerant or susceptible weeds. Dithiopyr was applied preemergence to weeds at the rate of 2.24 kg/ha to Maury silt loam soil. Weed seeds were planted routinely at 0.64 cm depth. Dithiopyr placed at the soil surface or 0.64 cm in depth caused the greatest injury to seedlings, followed by dithiopyr at 1.28 cm depth. Dithiopyr at 2.54 and 3.81 cm below the surface had no effect upon seedling growth. When seeding depth was investigated, seed placed at 0.64, 1.28 or 1.91 cm below the surface showed greatest seedling injury when dithiopyr was routinely applied at 0.64 cm depth. Seed placement on the soil surface resulted in the least injury to weeds. Peat moss was added to Maury silt loam soil and to sand to investigate the influence of organic matter upon activity. Soil with 2% peat resulted in the least injury to selected weed seedlings while sand, and sand plus up to 3% peat showed greatest injury. Sand amended with 5 and 6% peat also resulted in less injury to weed seedlings. Ivy leaf morningglory and KY 31 fescue were most tolerant of dithiopyr while barnyardgrass and large crabgrass were most sensitive. Dithiopyr uptake, translocation and metabolism studies will be conducted with susceptible and tolerant weed and woody ornamental species.


1992 ◽  
Vol 72 (4) ◽  
pp. 517-526 ◽  
Author(s):  
J. L. Walworth ◽  
M. T. Panciera ◽  
R. G. Gavlak

Field trials were conducted on three cryic soils in southcentral Alaska to determine the local suitability of the Mehlich 3 extractant. Mehlich 3 extractable B, Cu, Fe, Mn and Zn, DTPA-TEA extractable Cu, Fe, Mn and Zn, and hot water extractable B were measured on soils from factorial experiments with variable rates of B, Cu, Mn, and Zn. Additional soil samples from two B rate and liming studies in central Alaska were included in extractable B comparisons. Forage rape, broccoli, and potato tissue samples were collected from the factorial studies to determine relationships between soil- and plant-available micronutrients. Crop yields were not affected by micronutrient applications Neither Mehlich 3 nor DTPA-TEA extractant predicted plant-available Cu or Fe. Coefficients of determination between soil and plant tissue B were comparable for extraction by Mehlich 3 or hot water and ranged from 0.11 to 0.82 Neither the Mn nor Zn tests accounted for more than 39% of the observed tissue nutrient concentration variation. The inclusion of soil PH and organic matter slightly improved estimates of available B, Mn, and Zn. Mehlich 3 extractable Fe was poorly related to DTPA-TEA extractable Fe. Copper extracted with Mehlich 3 was related to that extracted with DTPA-TEA (r2 = 0.73); the inclusion of soil pH improved the relationship (r2 = 0.84). Mehlich 3 extractable Mn and Zn were closely related to DTPA-TEA extractable levels (r2 = 0.91 and 0.94, respectively). The correlation between Mehlich 3 and hot water B (r2 = 0.57) was significantly improved by including soil organic matter content (r2 = 0.71). Key words: Micronutrients, extractant, Mehlich 3, DTPA, hot water


2020 ◽  
Vol 42 (2) ◽  
pp. 168-178 ◽  
Author(s):  
Katarzyna Goławska ◽  
Zbigniew Lechowicz ◽  
Władysław Matusiewicz ◽  
Maria Jolanta Sulewska

AbstractThe paper presents the results of laboratory tests of plastic limit wP and liquid limit wL of Eemian gyttja characterized by different organic matter content Iom and calcium carbonate content CaCO3. Comparison of the liquid limit wL determined with the use of the Casagrande apparatus wLC and a cone penetrometer with cones having apex angles of 60° wL60 and 30° wL30 is shown. Based on statistical analysis of the test results, single- and two-factor empirical relationships for evaluating the plastic limit wP and liquid limit wL of Eemian gyttja depending on the organic matter content Iom and/or calcium carbonate content CaCO3 are presented in this study.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 550d-550
Author(s):  
Christopher J. Starbuck

A 7.5 cm layer (.1 m3) of fresh or 8-year-old oak sawdust was applied to 1.7 m2 plots as a mulch or tilled in to a depth of 10 cm. Saw dust-treated and control plots received 0.45 or 227 g of nitrogen applied as ammonium nitrate. Five one-year-old `Lynwood Gold' forsythia plants were planted in each of the 90 plots in the experiment in September 1992 and were pruned in March 1993 to 20 cm above the soil surface. Plant height, soil pH and levels of Na, organic matter, P, K Ca, Mg, NO3 and NH3 in the soil were determined following the 1993 growing season. Fresh and aged saw dust reduced plant growth by 40 and 31% respectively when incorporated without supplemental nitrogen. Adding the high rate of nitrogen overcame the inhibition caused by aged but not fresh sawdust. Both materials significantly reduced soil nitrate content even when used as a mulch and reduced phosphorus when incorporated. Organic matter content of sawdust-amended plots averaged over twice that of control plots. Neither material had a significant influence on pH as determined one year after incorporation.


2021 ◽  
Vol 69 (4) ◽  
pp. 369-377
Author(s):  
Sylvie Laureen Drahorad ◽  
Vincent J. M. N. L. Felde ◽  
Ruth H. Ellerbrock ◽  
Anja Henss

Abstract Biocrusts are biological communities that occupy the soil surface, accumulate organic matter and mineral particles and hence strongly affect the properties of the soils they cover. Moreover, by affecting water repellency, biocrusts may cause a preferential infiltration of rainwater, with a high impact on the formation of local water pathways, especially for sand dunes. The aim of this study is to shed light on the connections between water repellency and pH, carbonate and organic matter content in two dune ecosystems with different biocrust types. For this, we used contact angle measurements, gas volumetric carbonate determination and organic matter characterization via FT-IR and TOF-SIMS. In both ecosystems, moss-dominated biocrusts showed higher water repellency and higher amounts of organic matter compared to algal or cyanobacterial biocrusts. Surprisingly, the biocrusts of the two dune systems did not show differences in organic matter composition or organic coatings of the mineral grains. Biocrusts on the more acidic dunes showed a significantly higher level of water repellency as compared to higher carbonate containing dunes. We conclude that the driving factor for the increase in water repellency between cyanobacterial and moss-dominated biocrusts within one study site is the content of organic matter. However, when comparing the different study sites, we found that higher amounts of carbonate reduced biocrust water repellency.


2017 ◽  
Vol 38 (2) ◽  
pp. 607
Author(s):  
Wanderlei Bieluczyk ◽  
Marcos Gervasio Pereira ◽  
Roni Fernandes Guareschi ◽  
João Andrade Bonetti ◽  
Vanessa Aparecida Freó ◽  
...  

The identification of the labile and recalcitrant forms of soil organic matter (SOM) allows to rapidly define, or even predict if the management used favors increments or losses of carbon in the soil. Thus, the objective of this work was to assess the effects of different grazing intensities and soybean crops on the oxidizable and granulometric fractions of the SOM in a crop-livestock integration combined with no-tillage system (CLI-NTS), established in 2009 in the Goiás Federal University. The treatments consisted of three different pasture heights (0.25 m P25; 0.35 m P35; 0.45 m P45), and areas without grazing (AWG), and a native vegetation area of the Cerrado biome (NCA), adjacent to the experimental area, was evaluated as references and compared with the cultivated areas. Soil samples (Oxisol - USDA; typic distroferric Red Latosol - SiBCS) were collected in the layers 0.00-0.05; 0.05-0.10 0.10-0.20 and 0.20-0.40 m of each area, and arranged in a completely randomized experimental design with six replications. The soil total carbon was quantified (TC) by dry combustion. The SOM granulometry and oxidizable SOM were fractionated into particulate carbon (OCp), carbon bond with minerals (OCm) and four oxidizable fractions with increasing degrees of recalcitrance (F1 < F2 < F3 < F4). These soil attributes were evaluated at two different times, representing the post-pasture cycle (PP) and post-soybean crop (PC) periods. The lower contents of total soil carbon (TC) were found in the F1 and F3 fractions of the area without grazing, suggesting that the crop-livestock integration increases the organic matter content in the soil surface layer regardless of the pasture height. The areas without grazing and with different pasture heights in CLI had similar contents of OCp and OCm due to the experiment short time of implementation (3 years). The fractionation of the oxidizable SOM was more sensitive in differentiating the treatments, showing that the higher intensity of grazing used (P25) provided a better balance of carbon accumulation between the SOM labile and recalcitrant fractions.


1966 ◽  
Vol 46 (2) ◽  
pp. 139-145 ◽  
Author(s):  
N. S. Miljkovic ◽  
B. C. Matthews ◽  
M. H. Miller

The boron absorption by sunflowers in the greenhouse from samples of the genetic horizons of eight Ontario soils increased with increasing water-soluble boron content (R2 = 0.78). The absorption from a group of 17 cultivated surface samples was also positively correlated with water-soluble boron (R2 = 0.54).Clay content had the greatest influence on boron absorption after the influence of water-soluble boron was removed. The two variables in a multiple curvilinear regression accounted for 79% of the variability in absorption from the cultivated surface samples. The absorption increased with increasing clay content up to 15% and then decreased with a further increase in clay up to 20%. Organic matter content had a lesser effect on absorption. The [Formula: see text]-atm moisture value had a relatively large influence on absorption from the profile samples, but essentially no influence on that from the surface samples. The pH and CaCO3 content had very little influence on absorption from either set of samples.


Sign in / Sign up

Export Citation Format

Share Document