scholarly journals 270.Macrophage inhibitory cytokine-1 at the maternal - fetal interface in early pregnancy

2004 ◽  
Vol 16 (9) ◽  
pp. 270 ◽  
Author(s):  
B. Marjono ◽  
U. Manuelpillai ◽  
E. Dimitriadis ◽  
L. Salamonsen ◽  
S. Breit ◽  
...  

Macrophage inhibitory cytokine-1 (MIC-1) is a transforming growth factor-β (TGF-β) superfamily member, first isolated from activated macrophages and subsequently localised in the human placenta. We previously reported that decreased circulating levels in very early pregnancy are associated with subsequent miscarriage. We undertook these current in vitro studies to investigate possible roles for MIC-1 in early pregnancy: (1) regulation of placental matrix metalloproteinase-2 and -9 (MMP-2 and -9); (2) effect on placental apoptosis; and (3) regulation of endometrial stromal cell decidualisation. (1) First trimester placental explant cultures were treated with 100–200 ng/mL MIC-1 � 1/1000 (v/v) anti-MIC-1 antibody. MMP-2 and -9 were measured by gelatin zymography. MMP activation via the plasminogen activation pathway was examined by measuring mRNA expression for urokinase plasminogen activator and its receptor (uPA, uPAR) and type-1 plasminogen activation inhibitor (PAI-1). (2) In first trimester trophoblast explants, apoptosis was induced in vitro with tumor necrosis factor-α (TNF-α) and interferon-β (IFN-β) � 200 ng/mL MIC-1. The pro-apoptosis factor caspase-3 was localised by immunohistochemistry. (3) Using an established model of oestrogen and progesterone induced endometrial stromal cell decidualisation, MIC-1 production was measured and correlated with morphological changes. Cultures were also treated with 20 ng/mL MIC-1. MIC-1 treatment inhibited activation of both MMP-2 and MMP-9 while treatment with anti-MIC-1 antibody blocked the inhibition. uPA, uPAR and PAI-1 mRNA did not change with either treatment. MIC-1 treatment mitigated TNF-α/IFN-β induced trophoblast apoptosis. MIC-1 production increased during induced decidualisation and MIC-1 treatment facilitates further decidualisation in this model. MIC-1 appears to have a number of potentially important functions in the human placenta and decidua consistent with physiological roles in normal placentation. Whether these functions are key to successful pregnancy remains to be studied.

2020 ◽  
Vol 35 (2) ◽  
pp. 265-274 ◽  
Author(s):  
B M Fonseca ◽  
S C Cunha ◽  
D Gonçalves ◽  
A Mendes ◽  
J Braga ◽  
...  

Abstract STUDY QUESTION What are the effects of endocannabinoid anandamide (AEA) in uterine natural killer (unK) cells from miscarriage decidua, regarding their cytokine profile and endometrial stromal cell (ESC) crosstalk? SUMMARY ANSWER uNK-conditioned media from miscarriage samples present high TNF-α levels which inhibit ESC decidualisation. WHAT IS KNOWN ALREADY AEA plasma levels are higher in women who have suffered a miscarriage. Moreover, AEA inhibits ESC proliferation and differentiation, although the levels and impact on the uNK cell cytokine profile at the feto-maternal interface remain elusive. STUDY DESIGN, SIZE, DURATION This laboratory-based study used human primary uNK cells which were isolated from first-trimester decidua (gestational age, 5–12 weeks) derived from 8 women with elective pregnancy termination and 18 women who suffered a miscarriage. PARTICIPANTS/MATERIALS, SETTING, METHODS The first-trimester placental tissues were assayed for AEA levels by UPLC-MS/MS and respective enzymatic profile by western blot. The uNK cells were isolated and maintained in culture. The expression of angiogenic markers in uNK cells was examined by quantitative PCR (qPCR). The uNK-conditioned medium was analysed for IFN-γ, TNF-α and IL-10 production by enzyme-linked immunosorbent assay, and the impact on ESC differentiation was assessed by measuring decidual markers Prl, Igfbp-1 and Fox01 mRNA expression using qPCR. MAIN RESULTS AND THE ROLE OF CHANCE AEA levels were higher in miscarriage decidua compared with decidua from elective terminations. The uNK cell-conditioned medium from the miscarriage samples exhibited high TNF-α levels and interfered with the decidualisation of ESCs. Exacerbated inflammation and elevated TNF-α levels at the feto-maternal interface may trigger AEA signalling pathways that, in turn, may impact decidualisation and the angiogenic ability of uNK cells. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Primary uNK cell responses are based on a simple in vitro model. Thus, in complex microenvironments, such as the feto-maternal interface, the mechanisms may not be exactly the same. Also, the inflammatory events of miscarriage that, in this study, have happened prior to processing of the samples may cause different responses to that observed. In addition, the magnitude of the inflammatory response, required to trigger the AEA pathways that impact decidualisation and the uNK angiogenic ability in vivo, is still unclear. WIDER IMPLICATIONS OF THE FINDINGS The endocannabinoid AEA is a modulator of reproductive competence. AEA not only may contribute to neuroendocrine homeostasis but also can take part in uterine changes occurring during early pregnancy. STUDY FUNDING/COMPETING INTEREST(S) The work was supported by UID/MULTI/04378/2019 with funding from Fundação para a Ciência e a Tecnologia (FCT)/MCTES through national funds and PORTUGAL 2020 Partnership Agreement, NORTE-01-0145-FEDER-000024. S.C. Cunha acknowledges FCT for the IF/01616/2015 contract. There are no conflicts of interest.


2002 ◽  
Vol 266 (4) ◽  
pp. 223-228 ◽  
Author(s):  
Seung Yup Ku ◽  
Y. M. Choi ◽  
Chang Suk Suh ◽  
Seok Hyun Kim ◽  
Jung Gu Kim ◽  
...  

2009 ◽  
Vol 78 (3) ◽  
pp. 1012-1021 ◽  
Author(s):  
Rosane M. B. Teles ◽  
Rose B. Teles ◽  
Thais P. Amadeu ◽  
Danielle F. Moura ◽  
Leila Mendonça-Lima ◽  
...  

ABSTRACT Gelatinases A and B (matrix metalloproteinase 2 [MMP-2] and MMP-9, respectively) can induce basal membrane breakdown and leukocyte migration, but their role in leprosy skin inflammation remains unclear. In this study, we analyzed clinical specimens from leprosy patients taken from stable, untreated skin lesions and during reactional episodes (reversal reaction [RR] and erythema nodosum leprosum [ENL]). The participation of MMPs in disease was suggested by (i) increased MMP mRNA expression levels in skin biopsy specimens correlating with the expression of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), (ii) the detection of the MMP protein and enzymatic activity within the inflammatory infiltrate, (iii) increased MMP levels in patient sera, and (iv) the in vitro induction of MMP-9 by Mycobacterium leprae and/or TNF-α. It was observed that IFN-γ, TNF-α, MMP-2, and MMP-9 mRNA levels were higher in tuberculoid than lepromatous lesions. In contrast, interleukin-10 and tissue inhibitor of MMP (TIMP-1) message were not differentially modulated. These data correlated with the detection of the MMP protein evidenced by immunohistochemistry and confocal microscopy. When RR and ENL lesions were analyzed, an increase in TNF-α, MMP-2, and MMP-9, but not TIMP-1, mRNA levels was observed together with stronger MMP activity (zymography/in situ zymography). Moreover, following in vitro stimulation of peripheral blood cells, M. leprae induced the expression of MMP-9 (mRNA and protein) in cultured cells. Overall, the present data demonstrate an enhanced MMP/TIMP-1 ratio in the inflammatory states of leprosy and point to potential mechanisms for tissue damage. These results pave the way toward the application of new therapeutic interventions for leprosy reactions.


Blood ◽  
2000 ◽  
Vol 95 (5) ◽  
pp. 1642-1651 ◽  
Author(s):  
Sara E. J. Cotterell ◽  
Christian R. Engwerda ◽  
Paul M. Kaye

Alterations in hematopoiesis are common in experimental infectious disease. However, few studies have addressed the mechanisms underlying changes in hematopoietic function or assessed the direct impact of infectious agents on the cells that regulate these processes. In experimental visceral leishmaniasis, caused by infection with the protozoan parasite Leishmania donovani, parasites persist in the spleen and bone marrow, and their expansion in these sites is associated with increases in local hematopoietic activity. The results of this study show that L donovani targets bone marrow stromal macrophages in vivo and can infect and multiply in stromal cell lines of macrophage, but not other lineages in vitro. Infection of stromal macrophages increases their capacity to support myelopoiesis in vitro, an effect mediated mainly through the induction of granulocyte macrophage-colony stimulating factor and tumor necrosis factor-. These data are the first to directly demonstrate that intracellular parasitism of a stromal cell population may modify its capacity to regulate hematopoiesis during infectious disease.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3568-3568
Author(s):  
Mattias Magnusson ◽  
Melissa Romero ◽  
Sacha Prashad ◽  
Ben Van Handel ◽  
Suvi Aivio ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) ex vivo has been difficult due to limited understanding of their growth requirements and the molecular complexity of their natural microenvironments. To mimic the niches in which human HSCs normally develop and expand during ontogeny, we have derived two unique types of stromal niche cells from the first trimester human placenta and the fetal liver. These lines either support maintenance of multipotential progenitors in culture, or promote differentiation into macrophages. Impressively, the supportive lines facilitate over 50,000-fold expansion of the most immature human HSCs/progenitors (CD34+CD38-Thy1+) during 8-week culture supplemented with minimal cytokines FLT3L, SCF and TPO, whereas the cells cultured on non-supportive stroma or without stroma under the same conditions differentiated within 2 weeks. As the supportive stroma lines also facilitate differentiation of human hematopoietic progenitors into myeloid, erythroid and B-lymphoid lineages, we were able to show that the expanded progenitors preserved full multipotentiality during long-term culture ex vivo. Furthermore, our findings indicate that the supportive stroma lines also direct differentiation of human embryonic stem cells (hESC) into hematopoietic progenitor cells (CD45+CD34+) that generate multiple types of myeloerythroid colonies. These data imply that the unique supportive niche cells can both support hematopoietic specification and sustain a multilineage hematopoietic hierarchy in culture over several weeks. Strikingly, the supportive effect from the unique stromal cells was dominant over the differentiation effect from the non-supportive lines. Even supernatant from the supportive lines was able to partially protect the progenitors that were cultured on the non-supportive lines, whereas mixing of the two types of stroma resulted in sustained preservation of the multipotential progenitors. These results indicate that the supportive stroma cells possess both secreted and surface bound molecules that protect multipotentiality of HSCs. Global gene expression analysis revealed that the supportive stroma lines from both the placenta and the fetal liver were almost identical (r=0.99) and very different from the non-supportive lines that promote differentiation (r=0.34), implying that they represent two distinct niche cell types. Interestingly, the non-supportive lines express known mesenchymal markers such as (CD73, CD44 and CD166), whereas the identity of the supportive cells is less obvious. In summary, we have identified unique human stromal niche cells that may be critical components of the HSC niches in the placenta and the fetal liver. Molecular characterization of these stroma lines may enable us to define key mechanisms that govern the multipotentiality of HSCs.


APOPTOSIS ◽  
2005 ◽  
Vol 10 (1) ◽  
pp. 135-140 ◽  
Author(s):  
A. K. Charles ◽  
S. Hisheh ◽  
D. Liu ◽  
R. M. Rao ◽  
B. J. Waddell ◽  
...  

Reproduction ◽  
1977 ◽  
Vol 51 (2) ◽  
pp. 369-373 ◽  
Author(s):  
A. Saure ◽  
T. Teravainen ◽  
O. Karjalainen

2020 ◽  
Vol 8 (4) ◽  
pp. 164-169
Author(s):  
Rafał Sibiak ◽  
Michał Jaworski ◽  
Zuzanna Dorna ◽  
Wojciech Pieńkowski ◽  
Katarzyna Stefańska ◽  
...  

AbstractThe human placenta is a complex, multifunctional transient fetomaternal organ. The placenta is composed of the maternal decidua basalis and its fetal part, consisting of the mesenchymal and trophoblast cell lineages. Both the placenta and the amniotic membranes are abundant in readily available placenta-derived mesenchymal stem cells (PD-MSCs). The clinical application of the PD-MSCs opens new perspectives for regenerative medicine and the treatment of various degenerative disorders. Their properties depend on their paracrine activity – the secretion of the anti-inflammatory cytokines and specific exosomes. In contrast to the PD-MSCs, the trophoblast stem cells (TSCs) are much more elusive. They can only be isolated from the blastocyst-stage embryos or the first-trimester placental tissue, making that procedure quite demanding. Also, other cultures require specific, strictly controlled conditions. TSCs may be potentially used as an in vitro model of various placental pathologies, facilitating the elucidation of their mysterious pathogenesis and creating the environment for testing the new drug efficiency. Nonetheless, it is unlikely that they could be ever implemented as a part of novel cellular therapeutic strategies in humans.Running title: Current knowledge on the placental stem cells


Sign in / Sign up

Export Citation Format

Share Document