Effects of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro-nutrient accumulation in Poncirus trifoliata

2000 ◽  
Vol 13 (5) ◽  
Author(s):  
Ilhami Tozlu ◽  
Gloria A. Moore ◽  
Charles L. Guy

2000 ◽  
Vol 27 (1) ◽  
pp. 35 ◽  
Author(s):  
Ilhami Tozlu ◽  
Gloria A. Moore ◽  
Charles L. Guy

The effects of salinization with 0, 30, 60, 90, and 120 mМ sodium chloride (NaCl) on Poncirus trifoliata (L.) Raf. cv. Pomeroy were studied by means of stem elongation patterns, whole plant and tissue mass production, and mineral nutrient accumulation. The elements analyzed in leaf, stem, structural root and fine root tissues included Na, Cl, P, K, Ca, Mg, Mn, Fe, Cu, Al, and Zn. At the end of the 12-week experimental period, shoot length was reduced 30–80% in the 30 to 120 mМ NaCl treatments. The linear relationship found between stem elongation and salt concentration, and different tissues and salt concentration suggests that a 40–60 mМ NaCl concentration is optimal to test P. trifoliata or its progeny for salt stress. Root production was found to be continuous and plants apparently used this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. This phenomenon, designated ‘Fine Root Turnover’, is unique to P. trifoliata and may be used as a genetic resource to improve Citrus for salinity tolerance through intergeneric hybridization. Plants were able to delay accumulation of Na ions in leaves but not Cl ions, resulting in high Cl accumulation in leaves and accumulation of both ions in fine roots. The data suggested that, while Cl ions were more toxic in leaf tissues, Na ions were at least as toxic in fine root tissues. Among other nutrients, K was affected the most in response to salinity, decreasing within root tissues and increasing in leaf tissues with increased salin-ization. A similar phenomenon was observed for P levels in salinized tissues. Changes in tissue and whole plant accumulation patterns of the other tested elements as well as possible mechanisms for how excess Na and Cl ions are removed from and/or transported to less vulnerable tissues in Poncirus trifoliata during salinization are discussed.



2000 ◽  
Vol 27 (1) ◽  
pp. 27 ◽  
Author(s):  
Ilhami Tozlu ◽  
Gloria A. Moore ◽  
Charles L. Guy

Salt stress responses of C. grandis L. (Osb.), P. trifoliata (L.) Raf. and their F 1 were investi-gated. Growth, growth rates, as well as leaf, stem, structural root (> 2 mm diameter), fine root (≤ 2mm diameter) and whole plant dry masses were determined for the three genotypes tested in 0, 40 and 80 mМ NaCl environments for 20 weeks. P. trifoliata and C. grandis were phenotypically distinct and their F1 had features that were a combination of both parents. The different growth habits resulted in significant differences between the net growth and growth ratios ([net growth / initial growth] × 100) of the three genotypes and between control and salinized plants within each genotype. The average growth and dry weights of nearly all tissues were reduced in salinized plants compared to those of control plants. The exceptions were the fine roots of P. trifoliata at both salinities and of the F1 plants at 40 mМ NaCl. The 40 mМ NaCl treatment stimulated fine root production in P. trifoliata plants, significantly increasing dry weight by 30% compared to control plants. Average shoot dry weight reduction was greatest in C. grandis and least in P. trifoliata in the 40 mМ NaCl treatment. While leaf tissues of P. trifoliata were the most sensitive to salinity, root tissues were the most sensitive in C. grandis. To avoid salt accumulation, P trifoliata plants increased root dry mass production while C. grandis plants increased leaf mass production. These traits appeared to be heritable, since the F1 plants displayed responses intermediate to its parents leading to increased salinity tolerance. We suggest that not only ion content of leaf tissues, but ion content and mass production of all tissues should be considered when the salinity tolerance of Citrus and related genera is characterized.



Genome ◽  
1999 ◽  
Vol 42 (5) ◽  
pp. 1020-1029 ◽  
Author(s):  
Ilhami Tozlu ◽  
Charles L Guy ◽  
Gloria A Moore

The effects of salinization with 40 mM sodium chloride on Poncirus trifoliata (L.) Raf., Citrus grandis (L.) Osb., their F1, and a BC1 progeny population [C. grandis × (F1)] were investigated by measuring growth and dry mass production of different tissues and by QTL (quantitative trait locus) mapping. A total of 36 traits related to growth (six traits) and tissue or whole plant dry mass production (30 traits) in salinized and non-salinized BC1 progeny clones were evaluated. The comparison of the three parental types to the BC1 progeny under control and saline conditions showed that the BC1 progeny plants segregated transgressively for many of these traits. Mapping analyses of these quantitative traits resulted in a total of 70 potential quantitative trait loci (PQTL) with LOD scores greater than or equal to 3.0 located on a previously generated linkage map. Sixty-nine percent of the mapped PQTLs were for traits associated with salinity. The small progeny population size used made further analyses of these PQTLs necessary. By considering LOD scores, map locations, and correlation analyses of the traits, it was possible to identify 16 regions of the citrus genome of interest, six of which were involved in both growth and dry mass production. Correlation analyses and locations of PQTLs indicated that many of these regions may contain one or a few genuine QTLs of large effect. This is a first step in identifying QTLs that have a major impact on growth and dry mass production in Citrus under both optimum and stressful environments.Key words: Citrus grandis, Poncirus trifoliata, salinity stress, QTL mapping, morphological traits, transgressive segregation, NaCl, sodium, chloride, salt tolerance, citrus genetics, breeding.



Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 637
Author(s):  
Paul Kusuma ◽  
Boston Swan ◽  
Bruce Bugbee

The photon flux in the green wavelength region is relatively enriched in shade and the photon flux in the blue region is selectively filtered. In sole source lighting environments, increasing the fraction of blue typically decreases stem elongation and leaf expansion, and smaller leaves reduce photon capture and yield. Photons in the green region reverse these blue reductions through the photoreceptor cryptochrome in Arabidopsis thaliana, but studies in other species have not consistently shown the benefits of photons in the green region on leaf expansion and growth. Spectral effects can interact with total photon flux. Here, we report the effect of the fraction of photons in the blue (10 to 30%) and green (0 to 50%) regions at photosynthetic photon flux densities of 200 and 500 µmol m−2 s−1 in lettuce, cucumber and tomato. As expected, increasing the fraction of photons in the blue region consistently decreased leaf area and dry mass. By contrast, large changes in the fraction of photons in the green region had minimal effects on leaf area and dry mass in lettuce and cucumber. Photons in the green region were more potent at a lower fraction of photons in the blue region. Photons in the green region increased stem and petiole length in cucumber and tomato, which is a classic shade avoidance response. These results suggest that high-light crop species might respond to the fraction of photons in the green region with either shade tolerance (leaf expansion) or shade avoidance (stem elongation).



2013 ◽  
Vol 31 (3) ◽  
pp. 695-703 ◽  
Author(s):  
S.R. Marchi ◽  
D. Martins ◽  
N.V. Costa ◽  
J.R.V. Silva

This trial aimed to evaluate the effect of sequential applications of different plant regulators over growth and flower rachis emission of 'Meyer' zoysiagrass (Zoysia japonica). The study was conducted on 15-month old green turfgrass under a randomized complete block design with four replications. The following plant regulator and doses were tested: trinexapac-ethyl (113+113, 226+113, 226+226, 452+113, 452+226, 452+452, 678+339 e 904+452 g a.i./ha-1), prohexadione-calcium (100+100 e 200+200 g a.i. ha-1) and bispyribac-sodium (40+40 e 60+60 g a.i. ha-1), as well as an untreated control. The turfgrass was mowed again at 3.0 cm aboveground and the second plant regulator was applied when 'Meyer' zoysiagrass was between 5.0 and 6.0 cm high. The effect of the treatments was visually rated for visual injury, plant height, height and number of flower rachis, and total dry mass production of clippings. Only bispyribac-sodium had visual symptoms of injury on 'Meyer' zoysiagrass, and no intoxication was observed at 28 days after the second application (DAAB). The sequential applications of trinexapac-ethyl, prohexadione-calcium and bispyribac-sodium reduced by more than 80% the total clipping dry mass produced by 'Meyer' zoysiagrass. All the plant regulators tested also showed promising results in reducing the height and emission of rachis, especially when trinexapac-ethyl was applied at the doses 452+452, 678+339 and 904+452 g a.i. ha-1. 'Meyer' zoysiagrass turfgrass can be handled with the sequential application of a plant regulator, which reduces the need for mowing over a period up to 110 days after the application of the second plant regulator, and it also avoids deleterious visual effects over turfgrass.



2020 ◽  
pp. 1072-1080
Author(s):  
Charles Barbosa Santos ◽  
Kátia Aparecida de Pinho Costa ◽  
Wender Ferreira de Souza ◽  
Alessandro Guerra da Silva ◽  
Victor Costa e Silva ◽  
...  

Intercropping systems have become an interesting alternative for grain and forage production because they are sustainable systems that reduce carbon emissions in degraded pasture areas. However, few studies have used forage species recently introduced into the market, and more studies that assess the performances of these species in integrated systems are needed. Therefore, the objective of this study was to evaluate the agronomic characteristics of intercropped sorghum and Paiaguas palisadegrass (including the species name) in a crop-livestock integration system for pasture recovery. The field experiment was conducted in the municipality of Rio Verde, Goiás, Brazil, using a randomized block design with four replications. The treatments consisted of the following forage systems: monocropping of sorghum, monocropping of Paiaguas palisadegrass, row intercropping of sorghum with Paiaguas palisadegrass, interrow intercropping of sorghum with Paiaguas palisadegrass and intercropping of sorghum with oversown Paiaguas palisadegrass. To obtain a desired population of 240,000 plants ha-1, 12 seeds of sorghum and 5 kg of viable pure seeds of the forage species were planted per meter and hectare, respectively. The growth of Paiaguas palisadegrass in the same row as sorghum reduced the sorghum grain yield. The intercropping of sorghum with oversown Paiaguas palisadegrass hindered the initial development of Paiaguas palisadegrass in terms of plant height and number of tillers due to shading, and this effect was reflected in the dry mass production. Row and interrow intercropping provided higher dry mass production without affecting the forage quality. Therefore, the interrow intercropping of sorghum with Paiaguas palisadegrass was found to be a promising agricultural technique for grain and forage production that could be used for the establishment of new pastures or pasture recovery.



2018 ◽  
Vol 40 (3) ◽  
Author(s):  
Gabriel Stefanini Mattar ◽  
Carolina Cinto de Moraes ◽  
Laura Maria Molina Meletti ◽  
Luis Felipe Villani Purquerio

Abstract The mineral nutrition is essential to increase yield and fruit quality of passion fruit. There is no information of nutrient accumulation throughout the production cycle. Thus, in order to assist in the correct nutrients supply and update the recommendations, studies involving cultivars and cultivation techniques are necessary. The aim of this study was to evaluate the plant growth, the nutrient accumulation and the exportation in plants of yellow passion fruit cv. IAC 275. The experimental design was a randomized block, with three replications, where the treatments were evaluation times. Stem length, dry mass matter and nutrient accumulation in aerial part (leaves and stems), fruits and roots were evaluated. The maximum daily accumulation rate and periods of maximum nutritional requirement were calculated, in addition to the nutrient extraction and exportation. The nutrient accumulation at the end of the cycle, at 450 days after sowing, were in g plant-1: N (178.5) > K (162.4) > Ca (70.8) > Mg (14.8) > S (13.3) > P (11.0) and mg plant-1: Fe (827.6) > Mn (130.7) > Zn (69.8) > B (56.7) > Cu (17.8).



2006 ◽  
Vol 44 (4) ◽  
pp. 285-291 ◽  
Author(s):  
Masaharu MASUDA ◽  
Yuichi YOSHIDA ◽  
Kenji MURAKAMI ◽  
Kunihiro NAKACHI ◽  
Takafumi KINOSHITA


2004 ◽  
Vol 142 (2) ◽  
pp. 163-175 ◽  
Author(s):  
J. J. SAN JOSÉ ◽  
R. A. MONTES ◽  
N. NIKONOVA ◽  
N. VALLADARES ◽  
C. BUENDIA ◽  
...  

Field work on rainfed cowpea (Vigna unguiculata (L.) Walp. cvs TC-9-6 and M-28-6-6) was conducted in the Orinoco lowlands to explain the changes in dry-mass partitioning and radiation-use efficiency (RUE) as compared with other cultivars over four consecutive seasons. Growth features were assessed in early-maturing, prostrate-canopy (TC-9-6), and medium-maturing, erect-canopy (M-28-6-6) cowpeas. These cultivars were sown in consecutive middle-wet and late-wet seasons in double peak rainfall conditions. Dry mass accumulation by cultivars was assessed as a function of leaf-area duration and the efficiency with which radiation was converted into dry mass throughout the season (i.e. radiation-use efficiency). Cultivar differences in canopy architecture and duration of leaf area had a minor effect on the total dry mass production. In the early-maturing TC-9-6, RUE for a middle-wet and a late-wet season was 0·90±0·04 and 0·65±0·05 g/MJ, respectively. In the medium-maturing M-28-6-6, the values were 0·97±0·05 and 0·72±0·03 g/MJ, respectively. A season with rainfall below 100 mm had a negative effect on phenology and RUE. When average rainfall was above 100 mm, the total dry mass accumulation was not affected by differences in cultivars and seasons. The rate of harvest index (HI) changes was negatively related to pod-filling duration. The changes in assimilation distribution depended on the process of partitioning as modulated by the limited pod-sink and the photosynthate supply. However, the photosynthate source was not depressed by the sink activity of the pod-filling. Partitioning to non-reproductive sinks was maintained. M-28-6-6 with high dry-mass production and delayed senescence did not effectively divert a large amount of assimilate to pod-filling. Pod sink activity in cowpea was limited by genotype. Harvest index in M-28-6-6 decreased with the increasing dry mass. The final HI and rate of linear increase in HI differed between cultivars and were lower in M-28-6-6. The results of the present work in the Orinoco lowlands are relevant for a wide range of savannahs with a late wet season.



Sign in / Sign up

Export Citation Format

Share Document