Predicting the ignition of crown fuels above a spreading surface fire. Part I: model idealization

2006 ◽  
Vol 15 (1) ◽  
pp. 47 ◽  
Author(s):  
Miguel G. Cruz ◽  
Bret W. Butler ◽  
Martin E. Alexander ◽  
Jason M. Forthofer ◽  
Ronald H. Wakimoto

A model was developed to predict the ignition of forest crown fuels above a surface fire based on heat transfer theory. The crown fuel ignition model (hereafter referred to as CFIM) is based on first principles, integrating: (i) the characteristics of the energy source as defined by surface fire flame front properties; (ii) buoyant plume dynamics; (iii) heat sink as described by the crown fuel particle characteristics; and (iv) energy transfer (gain and losses) to the crown fuels. Fuel particle temperature increase is determined through an energy balance relating heat absorption to fuel particle temperature. The final model output is the temperature of the crown fuel particles, which upon reaching ignition temperature are assumed to ignite. CFIM predicts the ignition of crown fuels but does not determine the onset of crown fire spread per se. The coupling of the CFIM with models determining the rate of propagation of crown fires allows for the prediction of the potential for sustained crowning. CFIM has the potential to be implemented in fire management decision support systems.

2012 ◽  
Vol 11 (8) ◽  
pp. 1475-1480 ◽  
Author(s):  
Omer Kucuk ◽  
Ertugrul Bilgili ◽  
Serkan Bulut ◽  
Paulo M. Fernandes

2011 ◽  
Vol 75 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Elizabeth A. Lynch ◽  
Sara C. Hotchkiss ◽  
Randy Calcote

AbstractWe show how sedimentary charcoal records from multiple sites within a single landscape can be used to compare fire histories and reveal small scale patterns in fire regimes. Our objective is to develop strategies for classifying and comparing late-Holocene charcoal records in Midwestern oak- and pine-dominated sand plain ecosystems where fire regimes include a mix of surface and crown fires. Using standard techniques for the analysis of charcoal from lake sediments, we compiled 1000- to 4000-yr-long records of charcoal accumulation and charcoal peak frequencies from 10 small lakes across a sand plain in northwestern Wisconsin. We used cluster analysis to identify six types of charcoal signatures that differ in their charcoal influx rates, amount of grass charcoal, and frequency and magnitude of charcoal peaks. The charcoal records demonstrate that while fire histories vary among sites, there are regional patterns in the occurrence of charcoal signature types that are consistent with expected differences in fire regimes based on regional climate and vegetation reconstructions. The fire histories also show periods of regional change in charcoal signatures occurring during times of regional climate changes at ~700, 1000, and 3500 cal yr BP.


2018 ◽  
Author(s):  
Hang Yin ◽  
Hui Jin ◽  
Ying Zhao ◽  
Yuguang Fan ◽  
Liwu Qin ◽  
...  

2018 ◽  
Vol 48 (1) ◽  
pp. 105-110
Author(s):  
Jiann C. Yang

A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.


Author(s):  
Tomaz Hozjan ◽  
Kamila Kempna ◽  
Jan Smolka

Actual and future concerns in fire safety in buildings and infrastructure are challenging. Modern technologies provide rapid development in area of fire safety, especially in education, training, and fire-engineering. Modelling as a tool in fire-engineering provides possibility to design specific fire scenarios and investigate fire spread, smoke movement or evacuation of occupants from buildings. Development of emerging technologies and software provides higher possibility to apply these models with interactions of augmented and virtual reality. Augmented reality and virtual reality expand effectivity of training and preparedness of first (fire wardens) and second (firefighters) responders. Limitations such as financial demands, scale and scenarios of practical training of first and second responders are much lower than in virtual reality. These technologies provide great opportunities in preparedness to crisis in a safety way with significantly limited budget. Some of these systems are already developed and applied in safety and security area e.g. XVR (firefighting, medical service).


2013 ◽  
Vol 34 (4) ◽  
pp. 187-197 ◽  
Author(s):  
Andrzej Kacprzak ◽  
Rafał Kobyłecki ◽  
Zbigniew Bis

Abstract The influences of various operating conditions including cathode inlet air flow rate, electrolyte temperature and fuel particles size on the performance of the direct carbon fuel cell DCFC were presented and discussed in this paper. The experimental results indicated that the cell performance was enhanced with increases of the cathode inlet gas flow rate and cell temperature. Binary alkali hydroxide mixture (NaOH-LiOH, 90-10 mol%) was used as electrolyte and the biochar of apple tree origin carbonized at 873 K was used as fuel. Low melting temperature of the electrolyte and its good ionic conductivity enabled to operate the DCFC at medium temperatures of 723-773 K. The highest current density (601 A m−2) was obtained for temperature 773 K and air flow rate 8.3×106 m3s−1. Itwas shown that too low or too high air flow rates negatively affect the cell performance. The results also indicated that the operation of the DCFC could be improved by proper selection of the fuel particle size.


2016 ◽  
Vol 697 ◽  
pp. 852-857
Author(s):  
Rong Li ◽  
Bing Liu ◽  
Chun He Tang

TRISO coated fuel particle is the most important component in HTR fuel, the silicon carbide (SiC) coating layer is regarded as the pressure vessel to contain the fission products. During reactor operation, the inner pressure resulting from fission products and pyrocarbon (PyC) thermal effect will contribute to the failure of TRISO-coated particles. The higher temperature will result in the increasing of inner pressure and PyC thermal expansion, which will then change the stress of SiC layer. Considering the effects of temperature on inner-pressure expansion and elastic strain into the pressure vessel failure model, thermal effects on the stress of TRISO-coated particles were studied with analytical solution. The results indicated that the effects of inner pressure on the particle stresses were increasingly highlighted at the late stage of irradiation. And the increasing temperature caused a slight effect on PyC elastic modulus while elastic strain is unaffected greatly, either. Therefore, CFP stresses remain unchanged basically.


2017 ◽  
Vol 26 (5) ◽  
pp. 413 ◽  
Author(s):  
Miguel G. Cruz ◽  
Martin E. Alexander

Crown fires are complex, unstable phenomena dependent on feedback mechanisms between the combustion products of distinct fuel layers. We describe non-linear fire behaviour associated with crowning and the uncertainty they cause in fire behaviour predictions by running a semiphysical modelling system within a simple Monte Carlo simulation framework. The method was able to capture the dynamics of passive and active crown fire spread regimes, providing estimates of average rate of spread and the extent of crown fire activity. System outputs were evaluated against data collected from a wildfire that occurred in a radiata pine plantation in south-eastern Australia. The Monte Carlo method reduced prediction errors relative to the more commonly used deterministic modelling approach, and allowed a more complete description of the level of crown fire behaviour to expect. The method also provides uncertainty measures and probabilistic outputs, extending the range of questions that can be answered by fire behaviour models.


2010 ◽  
Vol 19 (1) ◽  
pp. iii ◽  
Author(s):  
Miguel G. Cruz ◽  
Martin E. Alexander ◽  
Ronald H. Wakimoto

Application of crown fire behavior models in fire management decision-making have been limited by the difficulty of quantitatively describing fuel complexes, specifically characteristics of the canopy fuel stratum. To estimate canopy fuel stratum characteristics of four broad fuel types found in the western United States and adjacent areas of Canada, namely Douglas-fir, ponderosa pine, mixed conifer, and lodgepole pine forest stands, data from the USDA Forest Service's Forest Inventory and Analysis (FIA) database were analysed and linked with tree-level foliage dry weight equations. Models to predict canopy base height (CBH), canopy fuel load (CFL) and canopy bulk density (CBD) were developed through linear regression analysis and using common stand descriptors (e.g. stand density, basal area, stand height) as explanatory variables. The models developed were fuel type specific and coefficients of determination ranged from 0.90 to 0.95 for CFL, between 0.84 and 0.92 for CBD and from 0.64 to 0.88 for CBH. Although not formally evaluated, the models seem to give a reasonable characterization of the canopy fuel stratum for use in fire management applications.


Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 18 ◽  
Author(s):  
Ginny Marshall ◽  
Dan Thompson ◽  
Kerry Anderson ◽  
Brian Simpson ◽  
Rodman Linn ◽  
...  

Current methods of predicting fire spread in Canadian forests are suited to large wildfires that spread through natural forests. Recently, the use of mechanical and thinning treatments of forests in the wildland-urban interface of Canada has increased. To assist in community wildfire protection planning in forests not covered by existing operational fire spread models, we use FIRETEC to simulate fire spread in lowland black spruce fuel structures, the most common tree stand in Canada. The simulated treatments included the mechanical mulching of strips, and larger, irregularly shaped areas. In all cases, the removal of fuel by mulch strips broke up the fuels, but also caused wind speed increases, so little decrease in fire spread rate was modelled. For large irregular clearings, the fire spread slowly through the mulched wood chips, and large decreases in fire spread and intensity were simulated. Furthermore, some treatments in the black spruce forest were found to be effective in decreasing the distance and/or density of firebrands. The simulations conducted can be used alongside experimental fires and documented wildfires to examine the effectiveness of differing fuel treatment options to alter multiple components of fire behavior.


Sign in / Sign up

Export Citation Format

Share Document